Seminario del

Área de Álgebra, Geometría y Computación Científica

Varias Variables Complejas. Una introducción

Dr. Héctor Díaz Leal Guzmán Departamento de Ciencias Básicas UAM - Azcapotzalco. miércoles 21 septiembre

de 13:30 a 14:30 horas

Plática presencial

Sala de seminarios del Departamento de Ciencias Básicas. Edificio HP, planta baja.

En esta plática se hace una comparación entre los resultados del Análisis en Una Variable Compleja y los de Varias Variables Complejas. El trabajo estará organizado como sigue:

- Funciones holomorfas, caso de una variable. Derivabilidad, holomorfía, analiticidad. Equivalencia de estos tres conceptos.
- 2. Funciones holomorfas, caso de varias variables. Holomorfía en términos de series de potencias. \mathcal{O}_D . Lema de Osgood y Teorema de Hartogs. Complejo-diferenciabilidad y equivalencia con holomorfía.
- 3. Teorema de identidad. Para $D \subseteq \mathbb{C}^n$ dominio, \mathcal{O}_D es dominio. Teorema del módulo máximo.
- 4. Dominios de Reinhardt. El dominio de convergencia de la serie de potencias $\sum a_{\mu} \mathbf{x}^{\mu}$ es dominio de Reinhardt completo, con base logarítmicamente convexa.
- 5. Dominios de holomorfía. Figuras de Hartogs generalizadas. Dominios Hartogs-convexos.
- 6. Dominio de holomorfía implica Hartogs-convexidad.
- Dominios de holomorfía, holomorfo-convexidad y pseudoconvexidad. Equivalencia.
- 8. Ejemplos de dominios de holomorfía: todo dominio en \mathbb{C} , toda región convexa en \mathbb{C}^n , todo dominio de Reinhardt completo con base logarítmicamente convexa.
- 9. Variedades de Stein.

Mayores informes: Janeth A. Magaña Zapata, jamz@azc.uam.mx

sitio: http://algecoci.azc.uam.mx

