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Abstract

Personnel assignment problems appear at several industries. The efficient assign-
ment of personnel to jobs, projects, tools, time slots, etcetera, has a direct impact in
cost terms for the business.

The Multidimensional Assignment Problem (MAP) is a natural extension of the
well-known assignment problem and can be used for applications where the assign-
ment of personnel is required. The most studied case of the MAP is the three di-
mensional assignment problem, though in recent years have been proposed some local
search heuristics and memetic algorithms for the general case. Let X1, . . . , Xs be a
collection of s ≥ 3 disjoint sets, consider all the combinations that belong to the Carte-
sian product X = X1× · · · ×Xs such that each vector x ∈ X, where x = (x1, . . . , xs)
with xi ∈ Xi ∀ 1 ≤ i ≤ s, has associated a weight w(x). A MAP in s dimensions is
denoted as sAP. A feasible assignment is a collection A = (x1, . . . , xn) of n vectors
if xik 6= xjk for each i 6= j and 1 ≤ k ≤ s. The weight of an assignment A is given
by w(A) =

∑n
i=1w(xi). The objective of sAP is to find an assignment of minimal

weight.

We focused our attention in a particular case of personal assignment problem: the
School Timetabling Problem (STP). The STP consider the assignment of personnel
to other two or more sets, for example can be required the assignment of professors
to courses to time slots to rooms, and sometimes also to students. The hardness of
this problem is not only the effectiveness at solving the corresponding sAP but also
at its modeling, since setting the weight for each possible combination is difficult by
itself.

In this thesis we make a deep study of MAP by starting with the state-of-the-art of
algorithms, heuristics and metaheuristics for its solving. We describe some algorithms
and we propose a new one for solving optimally medium problem size instances of
MAP. We propose the generalization of the known dimensionwise variation heuristics
as well as a new generalized local search heuristic that provide a new state-of-the-art
of local searches for MAP. We also propose a new simple memetic algorithm that is
competitive against the state-of-the-art memetic algorithm for MAP.

In the last part of this thesis, we provide a brief description of the state-of-the-art
for STP. Then, we introduce a new way for modeling this problem as a MAP and
present the results of such modeling by applying it to a real life case of study: STP
at UAM-A. We provide the particular aspects for STP at UAM-A and we propose a
new solution for this problem. Our solution is based on the solving of several 3AP
considering the introduced modeling and our proposed techniques.

Key words: Personnel assignment problem, multidimensional assignment problem,
school timetabling problem, local search, dimensionwise variation algorithm, memetic
algorithm.



Resumen

El problema de asignación de personal aparece en dicersas industrias. La asig-
nación eficiente de personal a trabajos, proyectos, herramientas, horarios, entre otros,
tiene un impacto directo en términos monetarios para el negocio.

El problema de asignación multidimensional (PAM) es la extensión natural del
problema de asignación y puede ser utilizado en aplicaciones donde se requiere la
asignación de personal. El caso más estudiado de PAM es el problema de asig-
nación en tres dimensiones, sin embargo en años recientes han sido propuestas algu-
nas heuŕısticas de búsqueda local y algoritmos meméticos para el caso general. Sean
X1, . . . , Xs una colección de s ≥ 3 conjuntos disjuntos, considere todas las combina-
ciones que pertenecen al producto Cartesino X = X1 × · · · ×Xs tal que cada vector
x ∈ X, donde x = (x1, . . . , xs) con xi ∈ Xi ∀ 1 ≤ i ≤ s, tiene asociado un peso
w(x). Un MAP en s dimensiones se denota como PAs. Una asignación factible es
una colección A = (x1, . . . , xn) de n vectores si xik 6= xjk para cada i 6= j y 1 ≤ k ≤ s.
El peso total de una asignación A está dado por w(A) =

∑n
i=1w(xi). El objetivo de

PAs consiste en encontrar una asignación de peso mı́nimo.

Enfocamos nuestro estudio en un caso particular de problema de asignación de
personal: el Problema de Asignación de Horarios (PAH). El PAH considera la asig-
nadción de personal a otros dos o más conjuntos, por ejemplo puede ser es requerida
la asignación de profesores a cursos a periodos de tiempo a salones, y algunas veces a
estudiantes. La dificultad de este problema no sólo consiste en resolver eficientemente
la correspondiente instancia sAP sino también en cómo modelarlo, esto debido a que
el establecimiento de los costos es dif́ıcil en śı mismo.

En este trabajo de tesis se realiza un estudio profundo de PAM comenzando con
un resumen del estado del arte de algoritmos, heuŕısticas y metaheuŕısticas para
su resolución. Luego, se describen algunos algoritmos y se propone uno nuevo que
resulve instancias de tamaño medio para PAM. También se propone la generalización
de las conocidas heuŕısticas de varación de dimensión aśı como una nueva heuŕıstica
generalizada de búsqueda local que proporciona un nuevo estado del arte de búsquedas
locales para PAM. Adicionalmente, se propone un algoritmo memético simple que es
competitivo en comparación con el algoritmo memético del estado del arte para PAM.

Hacia el final de la tesis, se presenta el estado del arte para PAH. Luego, se
describe una nueva forma de modelar este problema como un PAM y presentamos los
resultados de dicho modelado aplicándolo a un case real: el PAH en la UAM-A. Se
mencionan los aspectos particulares de PAH en la UAM-A y proponemos una nueva
solución la cual esta basada en la resolución de múltiples PA3, considera el modelado
mencionado y aplica nuestros algoritmos y heuŕısticas propuestos.



Palabras clave: Problema de asignación de personal, problema de asignación mul-
tidimensional, problema de asignación de horarios, búsqueda local, heuŕısticas de
variación de dimensión, algoritmo memético.
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Chapter 1

Introduction

The fast growth of some companies results in the loss of visibility of most of their
employees around its different departments. Personnel assignment is a difficult task
and, most of the time, it is easier to hire a new person instead of using an existing
resource. The efficient assignment of human resources is of great importance because
it has a huge monetary impact.

Some examples where the assignment of personnel is relevant are: crew assignment
in the navy; pilots and flight attendants to flights; nurses, surgeons and medical
assistants to surgeries; professors, schedules, and rooms to courses; software engineers
to technological projects; among many others.

The assignment of personnel can be modeled as an assignment problem. An
assignment problem deals with the question of how to assign persons to jobs where
each person is rated for a job through considering some aspects, for example: his
skills for performing a job, his availability, his experience, etc.

Even when the assignment of personnel is a very common problem it is usually
solved by hand. In general, the personnel is assigned to projects by their managers
whom not always have the visibility of all the people working at the company. On the
cases where the managers have the visibility of all their personnel, another problem
consists in determining a rating for the relation person-job, which is even a more diffi-
cult task. Once the values for the relations are somehow calculated, the corresponding
problem can be solved as an assignment problem.

However, there are some problems in which an assignment is required between per-
sons and other two or more sets of objects, for example as in the school timetabling
problem. In the school timetabling problem an assignment is required between pro-
fessors, courses, rooms and time slots. This is an example of a multidimensional
assignment problem which is a generalization of the classical assignment problem.

The assignment problem has been widely studied and several algorithms have
been proposed for its resolution. The most popular algorithm was proposed by
[Kuhn, 1955] and it is known as the Hungarian method which is a polynomial time al-
gorithm. Faster algorithms are currently known [Ahuja et al., 1994], [Bertsekas, 2009],

8



Introduction 9

[Goldberg and Kennedy, 1997], [Ramshaw and Tarjan, 2012a].

The multidimensional assignment problem has been studied mainly in the case
with three dimensions. Only in the last ten years have been proposed some heuristics
for the case with an arbitrary number of dimensions. The most popular algorithm
was proposed by [Balas and Saltzman, 1991] for the case with 3 dimensions and is
a branch and bound based technique which is an exponential time algorithm. It
is known that, unless P = NP, there is no polynomial time algorithm to solve this
problem: in 1972 Karp proved that 3 dimensional matchings is a NP-hard problem.

The multidimensional assignment problem is not only related to problems where
the assignment of personnel is required, it has many other applications, e.g. for
the multisensor data association problem where the objective is to determine which
measurements from one or more sensors are related to the same object; for the prob-
lem of selecting roots of a system of polynomial equations; for the geometric three-
dimensional assignment problem; among many others.

We consider the school timetabling problem as a case of study of assignment of
personnel because it has been approached by many authors, although most of them
do not deal with the multidimensional assignment problem involved, they solve a
simplified version. On the other side, it is easy to get real data for this problem.

We claim that the same methodology developed for our case of study could be
applied to other cases of assignment of personnel.

1.1 Motivation

The assignment problem is one of the most important problems in operations research,
and the multidimensional assignment problem arises naturally in many problems in
industry. However, there is no general purpose software that helps to deal with the
problem of how to assign persons to jobs or resources where more than two sets are
involved in the assignment.

Recently were published some heuristics and a memetic algorithm for the multi-
dimensional assignment problem for the cases with an arbitrary number of dimen-
sions ([Karapetyan and Gutin, 2011a] and [Karapetyan and Gutin, 2011b]). One of
the main purposes of this thesis is to develop better heuristics to solve larger problem
size instances.

Another motivation for this thesis was to solve a problem that involved the as-
signment of personnel, the school timetabling problem is a good option because still
is a very difficult problem to solve.

We promote the development of a generic tool to solve instances of the school
timetabling problem by considering some basic restrictions. Similar tools also could
be used to solve other assignment problems where two or more sets are involved in
the assignment.

UAM Azcapotzalco Sergio Pérez PhD in Optimization
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1.2 Problem description

The school timetabling problem is taken as a case of study for the assignment of
personnel.

The school timetabling problem could be modeled as a multidimensional assign-
ment problem. It is stated as follows: let p be a set of n professors and let c be a
set of n courses and let r be a set of n rooms and let t be a set of n time slots. A
weight for the relation professor-course-room-time slot is somehow calculated. An
assignment is a combination of the permutations of the elements from each set such
that the elements from each set are present in only one relation and all the elements
are present among all the relations.

The timetabling school problem can be formulated as a multidimensional assign-
ment problem. In this case it is required an assignment of n professors to n curses to
n rooms to n time slots.

The easiest way of assigning the costs of the relations in the timetabling school
problem is to set a 0 value in the case of valid relations, that is, if a professor p is
able to teach the course d in the room r at the time slot t, otherwise it should be 1.

Several options for the selection of the costs could be explored, the main dis-
advantage is that different ways of setting the costs may give a very different set
of solutions. The only way to evaluate the results of this part is to compare them
against the previous history and compare them to hand generated solutions.

The timetabling problem may vary widely from one educational institution to
another. This thesis is focused on the generality of this problem more than in specific
restrictions from particular scenarios.

1.3 Methodology

This thesis was developed by going through several stages. In summary, we started
with the study of the state of the art of the assignment problem and, mainly, of
the multidimensional assignment problem, then we proposed some new heuristics for
the multidimensional assignment problem and, finally, we took a real instance of the
school timetabling problem in order to test our heuristics.

In this way, the methodology adopted was as follows:

• The study of some state-of-the-art algorithms for the assignment problem and
comparing them.

• The study of several algorithms and heuristics for the multidimensional assign-
ment problem, focusing on those that were proven to be the best ones (in terms
of quality solution and time complexity).

• Development of some algorithms for the multidimensional assignment problem.

UAM Azcapotzalco Sergio Pérez PhD in Optimization
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• Development of several local search heuristics for the multidimensional assign-
ment problem and its experimental evaluation.

• The study of the school timetabling problem.

• The procurement of a real instance of the school timetabling problem consider-
ing some real data.

• Modeling and solving this real timetabling problem as a multidimensional as-
signment problem.

• Analysis of results, conclusions and proposal of future work.

Some of these stages were accomplished before the start of my doctoral studies.

1.4 Thesis structure

This document is structured as follows: In Chapter 2 we state the assignment problem
and we compare some of the best algorithms known for this problem. In Chapter 3 we
stated the multidimensional assignment problem and we summarize its state-of-the-
art. In Chapter 4 we propose several algorithms and heuristics for the multidimen-
sional assignment problem, then we compare such procedures against state-of-the-art
heuristics and meta-heuristics. In Chapter 5 we study the timetabling problem as a
case of study for the multidimensional assignment problem. In Chapter 6 we give the
conclusions and we propose some future work.

UAM Azcapotzalco Sergio Pérez PhD in Optimization



Chapter 2

The assignment problem

The assignment problem (AP) is introduced before the multidimensional assignment
problem (MAP) because it is easier to start with the problem in its two dimensions
version and then extended it to many dimensions. On the other side, it is necessary
because some of the later presented heuristics consider a simplification of a multidi-
mensional assignment problem to an assignment problem as part of its machinery.

The assignment problem deals with the question of how to assign a set X of n
items to a set Y of n items such that X ∩Y = ∅. An assignment could be stated as a
bijection ϕ of n items between X and Y . By considering such sets, the representation
of an assignment is given by a permutation ϕ such that:(

1 2 . . . n− 1 n
ϕ(1) ϕ(2) . . . ϕ(n− 1) ϕ(n)

)
where 1 is mapped to ϕ(1), . . . , and n is mapped to ϕ(n). For example, let X =
{x1, x2, x3, x4}, Y = {y1, y2, y3, y4} and the permutation ϕ = {3, 1, 4, 2}, then a pos-
sible assignment is:(

1 2 3 4
ϕ(3) ϕ(1) ϕ(2) ϕ(4)

)
⇔
(
x1 x2 x3 x4
y3 y1 y4 y2

)
Each permutation ϕ of the set with n items has a unique correspondence with the

permutation matrix Pϕ = (pij) of size n× n where:

pij =

{
1 if j = ϕ(i)
0 otherwise.

Furthermore, a permutation matrix is constrained to the system of linear equa-
tions:

12
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n∑
j=1

pij = 1 for i with 1 ≤ i ≤ n

n∑
i=1

pij = 1 for j with 1 ≤ j ≤ n

(2.1)

where pij ∈ {0, 1} for all i, j with 1 ≤ i, j ≤ n.

In the case of the previous example where X = {x1, x2, x3, x4}, Y = {y1, y2, y3, y4}
and ϕ = {3, 1, 4, 2}, the matrix corresponding to the system of linear equations is:

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


An assignment can also be described through bipartite graphs. Let G = (X, Y ;E)

be a bipartite graph with disjoin vertex sets X and Y and with edges E ⊆ X × Y .
A matching M in G is a subset of edges of E such that every vertex of G meet at
exactly one edge of the matching. In this way an assignment could be represented as
a matching M of G. The representation for the last example of an assignment as a
matching in a bipartite graph is shown in the Figure 2.1.

x1

x2

x3

x4

y1

y2

y3

y4

X Y

Figure 2.1: Representation of an assignment as a matching in a bipartite graph.

The assignment problem becomes an optimization problem when we consider the
cost of assigning some x ∈ X to some y ∈ Y . Let C = (cij) be a matrix of size n×n,
where cij is the cost of assigning xi to yj for all i, j with 1 ≤ i, j,≤ n.

Given the assignment problem as a permutation ϕ an let Sn be the set of all the
permutations with n items, the objective is defined as:

min
ϕ∈Sn

n∑
i=1

ciϕ(i) (2.2)
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Similarly, if the permutation matrix is related to the cost matrix C then the
corresponding 0-1 integer linear programming formulation is:

min
n∑
i=1

n∑
j=1

cijpij

subject to :
n∑
j=1

pij = 1 for i with 1 ≤ i ≤ n

n∑
i=1

pij = 1 for j with 1 ≤ j ≤ n

(2.3)

where pij ∈ {0, 1} for all i, j with 1 ≤ i, j ≤ n.

For the case of an assignment formulated as a matching in a bipartite graph,
consider weighted edges E, then the cost of a matching is:

c(M) =
∑

(x,y)∈M

c(x, y) (2.4)

where the objective is to minimize c(M).

There are some variants of the problem for the cases when the sizes of the sets
are different or not all the relations are present. Such variants are described by
considering an assignment as a matching in a bipartite graph.

Let G = (X∪Y ;E) be a bipartite graph that admits either |X| = |Y | or |X| 6= |Y |,
a bipartite graph is said to be balanced when |X| = |Y |, otherwise, the bipartite graph
is said to be unbalanced. Moreover, it could be that M in G does not include all the
vertices of G even when |X| = |Y |. A perfect matching is said to be a matching in
which |M | = |X| = |Y |. In 1935, Hall provided the necessary and sufficient conditions
for the existence of a perfect assignment [Hall, 1935].

Let ν(G) be the maximum size of any matching in G an let τ be a target value,
we require a matching M in G whose cost is minimum compared to all the possible
matchings of size τ . According to [Ramshaw and Tarjan, 2012b], three variants of an
assignment problem can be stated:

Perfect assignments: Let G be a balanced bipartite graph with weighted edges.
If ν(G) = n, then calculate the perfect matching of minimum cost in G; otherwise
the assignment is not feasible.

Imperfect assignments: Let G be a bipartite graph, either balanced or unbal-
anced, with weighted edges and let t ≥ 1 be a target size. Calculate the matching of
minimum cost in G of size τ = min(t, ν(G)).
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Incremental assignments: Let G be a bipartite graph, either balanced or un-
balanced, with weighted edges. Calculate the minimum cost matchings in G of sizes
1, 2, . . . , ν(G) presenting the result for each size. The size τ is selected from the closed
interval [1, ν(G)], the process ends when the desired value of τ is reached.

Perfect assignments are easier than the other two variants and the most difficult
are the incremental assignments. The most studied case has been perfect assignment
due to imperfect assignments can be reduced to perfect assignment as is described
in ??. For the problem of incremental assignments the best algorithms known are
just variants of the Hungarian method.

2.1 State of the art

The first algorithm for the assignment problem was proposed by [Easterfield, 1946]
and its temporal complexity was O(2nn2), however the problem was described in
terms of a combinatorial problem more than as an assignment problem.

The assignment problem was formally described in a paper entitled “The personnel
assignment problem” [Votaw and Orden, 1953].

The Hungarian method was proposed by [Kuhn, 1955]. One year later Kuhn
proposed more variants of the assignment problem [Kuhn, 1956]. The name of “Hun-
garian method” was because the algorithm was largely based on the earlier work of
two Hungarian mathematicians: König and Egervary. The Hungarian method was re-
viewed in [Munkres, 1957], where was determined that its time complexity was O(n4).
The Hungarian method is also known as the Kuhn-Munkres algorithm.

Since then, a lot of algorithms have been proposed for the assignment problem. In
general, there are some general methodologies to solve it, here we describe the most
relevant among them.

2.1.1 Auction algorithms

Auction algorithms for the assignment problem were introduced by [Bertsekas, 1981]
early in the eighties. This type of algorithms has been used extensively in business
environments to determine the best prices between a set of offered products.

An auction algorithm is an iterative procedure where we compare a set of offers
and then a sell is performed to the best bidder, the goal of the algorithm is to select
optimal prices and an assignment that maximizes the benefit. The classical methods
for the assignment problem are based on iterative improvements of some cost function,
which may be a primal cost (similar to primal simplex methods) or a dual cost (as
in the Hungarian method), but auction algorithms perform local updates which may
deteriorate both the primal and dual cost, although in the end it finds an optimal
assignment, which is due to the principle of approximate optimality. This is detailed
explained in [Bertsekas, 2009].
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The auction algorithms are excellent at solving perfect assignments. Even when
some auction algorithms cannot deal directly with problems in unbalanced graphs,
there are some techniques that allow us to transform an assignment problem over
an unbalanced graph to an equivalent problem in a balanced graph by adding some
dummy vertices and edges so that this type of algorithm is able to solve the cor-
responding problem. Theoretical time complexity of faster auction algorithms is
approximately O(nm log(nC)) where n is the number of vertices, m is the number of
edges and C is the maximum weight among all the edges.

One of the main advantages of auction algorithms for the assignment problem is
that they are highly parallelizable, as shown in [Bertsekas, 1988] and, for the match-
ing problem, as shown in [Naparstek and Leshem, 2016]. This is due to the fact
that auction algorithms perform local improvements which can occur at the same
time. Theoretical time complexity of parallel auction algorithms is approximately
O(n2 log n) if implemented on n parallel machines.

There are several works that deal with different variants of the assignment problem
and its applications, e. g. for the classical linear network flow problem and some of
its special cases as max-flow and shortest path [Bertsekas, 1992], for the asymmetric
assignment problem [Bertsekas and Castanon, 1993], for multi-assignment problems
where persons may be assigned to several objects and conversely [Bertsekas et al., 1993].

2.1.2 Weight scaling algorithms

Weight scaling algorithms were introduced by [Gabow and Tarjan, 1989] later in the
eighties. This is one of the most common techniques to solve the assignment problem.

A weight scaling algorithm creates a flow network based on the bipartite graph
of the corresponding assignment problem. By using a parameter called ε, it performs
some scaling phases aimed to reduce the flow error obtained at each of the previous
scaling phases. Each scaled phase gives an approximate optimal solution. The min-
imum cost is obtained at the last scaling phase. Theoretical time complexity of the
first weight scaling algorithm was O(

√
nm log nC) where n is the number of vertices,

m is the number of edges and C is the maximum weight among all the edges.

In contrast with auction algorithms, this type of technique is not so good at
solving perfect assignments but it is able to solve imperfect assignments. Another
difference is that, whereas auction algorithms perform local improvements, weight
scaling algorithms perform global updates. Weight scaling algorithms could also be
parallelizable as is shown in [Gabow and Tarjan, 1989], which allows to obtain a time
complexity of O(n2 log n) using n processors. Even when auction algorithms and
weight scaling algorithms present some differences, [Orlin and Ahuja, 1992] was able
to combine both ideas for creating a hybrid version to solve assignment problems.

This type of technique could also be used to solve other type of problems, e. g.
for the shortest path problem [Goldberg, 1995] and for network problems that work
by scaling the numeric parameters [Garbow, 1985].

UAM Azcapotzalco Sergio Pérez PhD in Optimization
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Weight scaling algorithms were later improved by [Ramshaw and Tarjan, 2012a],
achieving a complexity of O(m

√
s log sC) and by [Duan and Su, 2012] reducing the

complexity to O(m
√
n log n).

2.1.3 Push relabel algorithms

Push-relabel algorithms for the assignment problem were introduced by [Goldberg and Kennedy, 1995]
in the middle nineties.

A push-relabel algorithm, also known as preflow-push algorithm, is an algorithm
for computing maximum flows. This type of technique consists in converting a preflow
into a maximum flow by moving flow between neighboring nodes using push opera-
tions under the guidance of relabel operations. A push relabel algorithm is able to
solve an assignment problem by converting the bipartite graphs into a flow network .

This type of technique can be combined with a weight scaling technique in order to
obtain better bounds for the assignment problem as in [Goldberg and Kennedy, 1997]
where they achieve a reduction to O(m

√
n log (nC)).

2.2 Selection of an efficient algorithm

Some of the heuristics that will be described in the next chapter require the use of
a solver for instances of the assignment problem. The type of instances that will be
solved correspond to the variant of perfect assignments. In order to choose a fast
algorithm for this purpose three implementations of state-of-the-art algorithms were
experimentally evaluated.

2.2.1 The Hungarian method

The selected version of the Hungarian method consists in a improvement of its original
version and it was proposed by [Ramshaw and Tarjan, 2012a].

As the classical Hungarian method, this version works on the bipartite graph of
the assignment problem. Algorithm 1 shows the general structure of the Hungarian
method.

Let G = (X∪Y ;E) be the bipartite graph of the assignment problem with vertices
in X ∪ Y and weights in E, the Hungarian method works as follows: the algorithm
starts with an empty matching, then builds up its matching by augmenting along
tight augmenting paths. By using a variant of Dijkstra’s algorithm a shortest path
forest is build aimed to reach all the remaining x 6∈ A, if some y is reachable from
some x through an alternating path then a new augmenting path of minimum cost
is obtained. At each step of the algorithm a matching of size s and minimum cost is
obtained. The algorithm ends when the maximum size ν(G) of any matching at G is
reached. This algorithm has a overall time complexity of O(ms + s2 log r) where m
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Algorithm 1: Improved version of the Hungarian method (by Ramshaw and
Tarjan)

Input: G = (X ∪ Y ;E): Bipartite graph of an assignment problem.
Result: A: The min-cost assignment of size s.

1 Set A to the empty matching;
2 Set prices at X to 0, at Y to C;
3 Let ν(G) be the max size of any matching at G. for s in 0 : ν(G) do
4 use Dijkstra to build a shortest path forest with roots at all x 6∈ A;
5 if some y 6∈ A was reached then
6 Raise prices to tighten the tree path to y;
7 Augment A along that tight path;

8 else
9 return A of size ν(G);

is the number of edges, s = ν(G) and r = |Y |. This algorithm is explained in detail
in[Ramshaw and Tarjan, 2012a].

The Hungarian method solves the problem of incremental assignments which is
more difficult than perfect assignments, however it is the obligated reference in order
to have a clear idea about how good are other algorithms against this technique.

2.2.2 The flow assign algorithm

In order to evaluate a weight scaling technique the FlowAssign algorithm proposed
by [Ramshaw and Tarjan, 2012b] was implemented.

In contrast with the Hungarian algorithm, this technique works on a derived flow
network from the original bipartite graph. Algorithm 2 shows the general structure
of the FlowAssign algorithm.

Let G = (X ∪ Y ;E) be the bipartite graph of the assignment problem with
vertices in X ∪ Y and weights in E, let t be a target value of the desired size of the
assignment such that t ≤ min(|X|, |Y |) and let NG be a derived flow network from
G, the FlowAssign algorithm works as follows: first, the Hopcroft-Karp algorithm is
applied in order to obtain a matching M of size s such that s = t if assignment of
size t exists or s = ν(G) < t, otherwise. Then, the matching M is converted into an
integral flow f on NG, this transforms the problem of finding minimum cost matchings
in G to the equivalent problem of finding minimum cost integral flows in NG. A set
of scalings is performed by starting from some predefined ε value that denotes the
precision of the solution reached at each scaling-phase. The Refine function builds a
shortest-path forest, finds a maximal set P of augmenting paths that are compatible
and augment along them. It starts by considering prices for the vertices that are ε̄
optimum and it is improving the current solution at each iteration. Once a required
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Algorithm 2: FlowAssign algorithm (by Ramshaw and Tarjan)

Input: G = (X ∪ Y ;E): Bipartite graph of an assignment problem;
t: The required size of the assignment.
Result: A: The min-cost assignment of size s;
s: The maximum size reached of an assignment such that s ≤ t.

1 (M, s) = HopcroftKarp(G, t);
2 Convert M into an integral flow f on NG with |f | = s;
3 Set ε = ε̄;
4 ∀v ∈ NG set the prices pd(v) = 0;
5 while ε > ε do
6 ε = ε/q;
7 Refine(f , p, ε) builds a shortest path forest, finds a maximal set of

augmenting paths and augments along them;

8 Round prices to integers that make all arcs proper;

precision ε is reached, the main loop ends and the last step round prices to integers
that make all arcs proper and gives the required solution. This algorithm has a overall
time complexity of O(m

√
s log (sC)) where m is the number of edges, s is the size

of the assignment A and C is the maximum weight in the bipartite graph. This
algorithm is explained in detail in [Ramshaw and Tarjan, 2012a].

The FlowAssign algorithm solves the problem of imperfect assignments which is
more difficult that perfect assignments but easier than incremental assignments, this
is why time complexity is better than the one of the Hungarian method.

2.2.3 The ε−scaling auction algorithm

In order to evaluate a faster algorithm, we consider the ε−scaling auction algorithm
proposed by [Bertsekas, 2009]. In particular, an specific implementation provided by
[Vargas, 2017] was evaluated.

This technique differs from the previous ones because this performs local improve-
ments in order to reach a global optimum whereas the other ones perform global
updates for the same goal. The ε−scaling Auction algorithm operates like a real auc-
tion. The core of this algorithm is that, at each step of the process, a condition called
complementary slackness should be kept. This condition provides the conditions for
the feasible primal and dual solutions of an assignment problem to be optimal. This
algorithm only works on feasible instances of the problem of the perfect assignment
problems category. The Algorithm 3 shows the general structure of this auction
algorithm.

Let G = (X∪Y ;E) be the bipartite graph of the assignment problem with vertices
in X ∪ Y and weights in E and let ε be a required parameter, the ε−scaling auction
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The assignment problem 20

Algorithm 3: The ε−scaling Auction algorithm (by Bertsekas)

Input: G = (X ∪ Y ;E): Bipartite graph of an assignment problem;
ε > 0: The precision parameter to satisfy the Complementary Slackness
condition.
Result: A: The min-cost assignment of size n.

1 A = ∅;
2 Let p the prices that will satisfy the ε− Complementary Slackness condition

(such that w(x1y1)− p(y1) ≤y2∈N(x1) min {w(x1y2)− p(y2)}+ ε);
3 while is some x 6∈ A do
4 Consider some x1 6∈ A;
5 Find the edges x1y1, x1y2 with the two minimum costs;
6 if If u has only 1 neighbor then
7 Set γ =∞;

8 else
9 Set γ = (w(x1y1)− p(y2))− (w(x1y2)− p(y1));

10 Set p(y1) = p(y1)− γ − ε;
11 return A

algorithm works as follows: first, a matching A is set up to the empty set and any
arbitrary initial prices p are considered. At each step of the main loop an unassigned
vertex of the set X is considered as well as its two neighbors with the two minimum
costs. Then, depending on the number of neighbors of the selected vertex its price is
updated. If the procedure is applied to an instance that has perfect matchings then
the procedure always terminates with an optimal assignment, otherwise, the main
loop will never end. This algorithm has an overall time complexity of O(mn log (nC))
where m is the number of edges, n is the number of vertices (recall here n = |X| = |Y |)
and C is the maximum weight in the bipartite graph. This algorithm is explained in
detailed in [Vargas, 2017].

2.3 Families of instances for the AP

One way to distinguish families of instances for the assignment problem is by the
number of vertices in X and Y. In this way, there are two general types of families of
instances: the family of instances with an equal number of vertices (|X| = |Y |) and
the family of instances with a different number of vertices |X| 6= |Y |, abbreviated
ENV and DNV respectively. We are interested on the family of instances ENV.

The easiest way to generate a testbed for the family of instances ENV is to con-
sider a complete bipartite graph with uniformly random generated weights in the
closed interval [a, b]. To consider a complete bipartite graph is not the only option
however, for the purposes of this thesis, the complete bipartite graph is the only type
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of instances we are going to analyze. On the other side, all the instances that consider
non-complete bipartite graphs can be transformed into instances with complete bipar-
tite graphs where the missing edges can be added with a very high value (or very low
depending on the optimization function) such that those edges can be discarded from
the optimal solution. This is why, in order to provide a fairest comparison between
each solver will be considered other distributions.

The next subsections describe the used types of distributions to set the weights
of the edges among some instances of the type ENV that consider complete bipartite
graphs. Some distributions are continuous and are described by a probability density
function which is used to specify the probability of the random variable for falling
within a range of values. The other distributions are discrete and are described by a
probability mass function which gives the probability for a discrete random variable
to be an exact value.

2.3.1 Uniform distribution

The uniform distribution is a family of symmetric distributions such that each member
of the family have the same probability to occur. This distribution is described by
the next probability density function:

f(x) =

{
1
b−a for a ≤ x ≤ b

0 for x < a or x > b
(2.5)

This family of instances will be generated by considering x under the closed integer
interval [1, 100].

2.3.2 Normal distribution

The normal distribution is a family of continuous distributions such that each member
x is associated to the normal random variable with a cumulative probability. This
distribution is described by the following function:

f(x) = [1/σ
√

2π]e−(x−µ)
2/2σ2

. (2.6)

This family of instances have the particularity that the sum of the members gen-
erated have a bell distribution.

This family of instances will be generated by considering the parameters µ = 50
and σ = 10 such that the generated values tend to 50 and the general values belong
to an interval near to [1, 100]. Since this is a continuous distribution the generated
values will be truncated in order to get only the corresponding integer values.
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2.3.3 Poisson distribution

The Poisson distribution is a discrete probability distribution that models the prob-
ability of the number of events occurring in a given interval of time or space. The
events occur within a known average rate and independently of the time since the
last event. This distribution is described by the following probability mass function:

Pr(k events in the interval) = e−λ
λk

k!
(2.7)

This family of instances will be generated by considering a λ = 50 such that the
generated values tend to something similar like in the normal distribution. For this
distribution will be used a formulation proposed by [Ahrens and Dieter, 1982] who
provided samples from Poisson distributions of mean µ ≥ 10 by truncating suitable
normal deviates and applying a correction with low probability. The advantage of
such technique is that provides a competitive method for random generating values.

2.3.4 Binomial distribution

The binomial distribution is a discrete probability distribution that considers the
probability of the number success events in a sequence of n independent experiments
with a success probability of p. This distribution is described by the following prob-
ability mass function:

Pr(x = k) =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . n. (2.8)

This family of instances will be generated by considering the parameters n = 100
and p = 0.5 such that the generated values tend also to 50, within the closed interval
of [0, 100].

2.3.5 Hypergeometric distribution

The hypergeometric distribution is a discrete probability distribution that describes
the probability of k successes in n draws, without replacement, from a population
of size N which contains exactly K successes. This distribution is described by the
following probability mass function:

Pr(x = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) . (2.9)

This family of instances will be generated by considering the parameters N = 200,
K = 100, n = 100 such that the generated values tend also to 50, within the closed
interval of [0, 100]. For this distribution will be used a formulation proposed by
[Kachitvichyanukul and Schmeiser, 1985].
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2.4 Performance results

All the instances were generated in the programming language R version 3.1.3 be-
cause it provides an easy way for number generating under the previously described
distributions.

The Algorithm 4 shows the used code to generate the five families of instances for
the AP. Each generated instance file consists on a header value n that indicates the
number of vertices on the bipartite graph (with n = |X| = |Y | ); then are following
n2 integer values corresponding with the n2 edge costs given in the order w(x1, y1),
. . . , w(x1, yn), w(x2, y1), . . . , w(x2, y1), . . . , w(xn, y1), . . . , w(xn, yn). This format is
commonly used when are considered complete bipartite graphs. There were generated
five instances for each combination of distribution and N for a total of 125 instances.

Algorithm 4: Instances generator for a variety of families of instances for the
AP

Input:
Result: A total of (number of instances * length(n values) * 5) instances for

the AP under the distributions uniform, normal, Poisson, binomial,
and hypergeometric.

1 set.seed(0);
2 Set n values < − c(1024);
3 Set number of instances < − 5;
4 for iteration in 1:number of instances do
5 for n in n values do
6 edges < − n * n;
7 values < − round(runif(edges, min = 1, max = 100));
8 write(c(n, values), file = sprintf(“ap unif n%d k%d.in”, n, iteration),

ncolumns = 1);
9 values < − abs(round(rnorm(edges, 50, 10)));

10 write(c(n, values), file = sprintf(“ap norm n%d k%d.in”, n, iteration),
ncolumns = 1);

11 values < − rpois(edges, 50);
12 write(c(n, values), file = sprintf(“ap pois n%d k%d.in”, n, iteration),

ncolumns = 1);
13 values < − rbinom(edges, 100, 0.5);
14 write(c(n, values), file = sprintf(“ap binom n%d k%d.in”, n, iteration),

ncolumns = 1);
15 values < − rhyper(edges, 100, 100, 100);
16 write(c(n, values), file = sprintf(“ap hyper n%d k%d.in”, n, iteration),

ncolumns = 1);

The format name for the instance files is ap distribution nN kiteration.in where
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distribution corresponds with one of unif (uniform), norm (normal), pois (Poisson),
binom (binomial), and hyper (hypergeometric); N corresponds with the number of
vertices; and iteration corresponds with the consecutive number for the generated
instance.

All the instances were solved through a improved version of the Hungarian method,
the FlowAssign algorithm, and the ε−scaling Auction algorithm. These algorithms
were implemented in C++ and its performance was evaluated on a platform with an
Intel Core i5-3210M 2.5 GHz processor with 4 GB of RAM under Windows 8.

The Table 2.1 shows the running times for the described families of instances.

Table 2.1: Averaged running times for the five families of instances for the AP solved
through Auction, FlowAssign and Hungarian algorithms.

Family of Averaged seconds for five instances
instances N Auction FlowAssign Hungarian

64 0.005 0.017 0.018
128 0.007 0.053 0.073

Binomial 256 0.034 0.386 0.451
512 0.118 1.431 3.178

1024 0.427 6.441 17.372

64 0.005 0.017 0.018
128 0.009 0.062 0.081

Hypergeometric 256 0.029 0.276 0.414
512 0.107 1.196 2.623

1024 0.471 6.692 18.222

64 0.004 0.018 0.02
128 0.008 0.069 0.099

Normal 256 0.026 0.291 0.41
512 0.083 1.157 2.571

1024 0.441 7.023 19.491

64 0.006 0.018 0.017
128 0.008 0.055 0.077

Poisson 256 0.023 0.243 0.403
512 0.085 1.112 2.486

1024 0.374 6.255 16.882

64 0.005 0.022 0.021
128 0.009 0.061 0.081

Uniform 256 0.032 0.261 0.442
512 0.171 1.296 3.153

1024 0.864 5.147 23.712

Ave. time 0.134 1.583 4.492
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In the Table 2.1, each value represents the averaged running times for the five
instances for each combination of family of instances and problem size N . It can be
observed that the fastest algorithm was the ε−scaling Auction algorithm, followed
by the FlowAssign algorithm and then by the Hungarian algorithm. In fact, this is
the expected behavior since each algorithm is more able to solve a different version
of the assignment problem: Hungarian method for incremental assignments (which
is the most difficult version of the AP), the FlowAssign algorithm for imperfect as-
signments, and the ε−scaling Auction algorithm for perfect assignments (which corre-
sponds to the easiest version of the AP). All the generated instances corresponds with
the problem of perfect assignments. This is why, the ε−scaling Auction algorithm
outperformed the other two algorithms.

By considering the averaged total time results reported in Table 2.1, it can be
observed that the ε-scaling Auction algorithm is 11.8 times faster than the FlowAssign
algorithm whereas it is 2.8 times faster than the Hungarian method. The highlight
result is that the ε-scaling Auction can be 33 times faster than an improved version of
the Hungarian method. This comparison is relevant because a solver for the version of
perfect assignment problem is required as part of some heuristics that will be described
in the next chapter. Those heuristics are able to get better solutions if are executed
many times in certain period of time, so the possibility to have a better algorithm
to solve instances of perfect assignment allows to increase the quality solution in a
shorter period of time.

Finally, the Table 2.2 shows the sum of the running times showed in the Table 2.1
for the families of instances solved by each algorithm.

Table 2.2: Comparative results for the sum of running times of Auction, FlowAssign
and Hungarian over the families of instances for the AP.

Auction FlowAssign Hungarian

Binomial 0.591 8.328 21.092
Hypergeometric 0.621 8.243 21.358
Normal 0.562 8.558 22.591
Poisson 0.496 7.683 19.865
Uniform 1.081 6.787 27.409

Average 0.670 7.920 22.463

Standard dev. 0.234 0.710 2.930

In the Table 2.2, the row Average shows the averaged running times for each
family of instances and the row Sstandard dev. shows the standard deviation σ
among the running times for each family. It can be observed that the families of
instances binomial, hypergeometric and normal seems to have the same degree of
difficulty whereas the behavior over the Poisson family and the uniform family is
a bit different. The Poisson family of instances seems to be the easiest family of
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instances to solve under these algorithms, except for the FlowAssign algorithm. In
the opposite, the uniform family of instances seems to be the most difficult, except
for the FlowAssign algorithm, in whose case resulted in the easiest family.

Based on the experimental results of Table 2.2 we can conclude that the weights
distribution have an impact on the algorithmic performance. In the case of the
ε−scaling Auction algorithm and the FlowAssign algorithm the time complexity have
an explicit relation with the weights but, in the case of the Hungarian method, such
relation is not part of the theoretical time complexity. In this case, the experimental
evaluation showed that some relation should exist. The correct path of such analysis
is out of the scope of this thesis work however it is proposed as future work.

2.5 Conclusions

There is a wide variety of algorithms that solves different versions of the assignment
problem and is recommendable to use the better algorithm according to the version
to solve.

Here were implemented some of the best algorithms to solve each version of the
problem in order to show the expected performance in practice for the version of the
problem that we care, which is the perfect assignment version.

There were proposed five families of instances based on five types of distributions
for the weights generation of each family of instances. This families were specifically
generated for the perfect assignment problem under complete bipartite graphs.

The ε−scaling Auction algorithm obtained the fastest running times for solving all
the families of instances proposed and the proportional relation between its running
times and those obtained by the Hungarian algorithm is of approximately 30x times
faster.

The weights distributions are important because they have an impact on the
implemented algorithms, however it is unclear the type of structure that it is easier
or more difficult to solve at each case.

This study was very important to do because some of the heuristics that are used as
part of this thesis work were considering a classical version of the Hungarian method,
however by considering the ε−scaling Auction algorithm, which is a more adequate
algorithm for the required tasks, the performance of such heuristics is considerable
better. Such results are presented in the next chapter.
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Chapter 3

The multidimensional assignment
problem

The multidimensional assignment problem (MAP), also known as sAP in the case of
s dimensions, is a natural extension of the well-known assignment problem (AP).

The multidimensional assignment problem, also called the axial multi-index as-
signment problem, deals with the question of how to perform an assignment between
the elements of s disjoint sets with n items at each.

Let s ≥ 2 be a fixed number of dimensions and let X1, X2, . . . , Xs be a collection
of s disjoint sets, without loss of generality we assume that n = |X1| = |X2| = · · · =
|Xs| (otherwise we add some dummy elements to equilibrate them), a sAP could be
equivalently stated in one of several ways.

A s-dimensional assignment can be stated as s−1 bijections ϕi (for 1 ≤ i < s) of n
items where ϕ1 maps X1 and X2, . . . , ϕs−1 maps X1 and Xs. Then, the representation
of an assignment is given by a set of s− 1 permutations ϕi such that:

1 2 . . . n− 1 n
ϕ1(1) ϕ(2) . . . ϕ(n− 1) ϕ(n)
. . . . . . . . . . . . . . .

ϕs−1(1) ϕs−1(2) . . . ϕs−1(n− 1) ϕs−1(n)


where 1 is mapped to ϕ1(1), . . . , and n is mapped to ϕ1(n), and ϕ1(1) is mapped
to ϕ2(1), . . . , and ϕ1(n) is mapped to ϕ2(n), and so on. For example, let s = 3
and X1 = {x11, x12, x13, x14}, X2 = {x21, x22, x23, x24} and X3 = {x31, x32, x33, x34} and the
permutations ϕ1 = (3, 1, 4, 2) and ϕ2 = (2, 3, 1, 4), then a possible assignment is: 1 2 3 4

ϕ1(3) ϕ1(1) ϕ1(4) ϕ1(2)
ϕ2(2) ϕ2(3) ϕ2(1) ϕ2(4)

⇔
 x11 x12 x13 x14

x23 x21 x24 x22
x32 x33 x31 x34

 .

Each combination of the permutations ϕ1, . . . , ϕs−1 of the sets with n items has a
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unique correspondence with the permutation matrix Pϕ1,...,ϕs−1 = (pi1i2...is) of size ns

where:

pi1i2...is =

{
1 if i2 = ϕ1(i

1) and . . . and is = ϕs−1(i
1)

0 otherwise
.

Furthermore, a permutation matrix is constrained by the following system of linear
equations:

n∑
i2=1

n∑
i3=1

· · ·
n∑

is=1

pi1i2...is = 1 for i with 1 ≤ i1 ≤ n

. . .
n∑

i1=1

n∑
i2=1

· · ·
n∑

is−1=1

pi1i2...is = 1 for i with 1 ≤ is ≤ n

(3.1)

where pi1i2...is ∈ {0, 1} for all i1, i2, . . . , is with 1 ≤ i1, i2, . . . , is ≤ n.

The previous example corresponds with the permutation matrices:
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


An assignment can also be described through multipartite hypergraphs. Let G =

(X1, X2, . . . , Xs;E) be a multipartite hypergraph with disjoin vertex sets X1, X2,
. . . , Xs and with hyperedges E ⊆ X1 × X2 × · · · × Xs. A matching M in G is a
subset of hyperedges of E such that every vertex of G meets at most one edge of the
matching. In this way an assignment could be represented as a matching M of G.
The representation for our example as a matching in a bipartite graph is shown in
Figure 3.1. Each hyperedge of the assignment is represented with a different color, for
example, vertices x11, x

2
3 and x32 are related through a hyperedge colored with black.

The multidimensional assignment problem becomes an optimization problem when
we consider the cost of assigning some x1 ∈ X1 to some x2 ∈ X2, . . . , to some xs ∈ Xs.
Let C = (ci1i2...is) be a matrix of size ns, where ci1i2...is is the cost of assigning x1i1 to
x2i2 to . . . to xsis for all i1, i2, . . . , is with 1 ≤ i1, i2, . . . , is ≤ n.

Given the assignment problem as a combination of permutations ϕ1, ϕ2, . . . , ϕs−1,
let CSn be the set of all the combinations of s− 1 sets of permutations with n items
at each, the objective is defined as:

min
ϕ1ϕ2...ϕs−1∈CSn

n∑
i=1

ciϕ1(i)ϕ2(i)...ϕs−1(i) (3.2)
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x11

x12

x13

x14

x21

x22

x23

x24

x31

x32

x33

x34

X1 X2 X3

Figure 3.1: Representation of a 3-dimensional assignment as a matching in a multi-
partite hypergraph.

Similarly, if the permutation matrix is related to the cost matrix C then the
corresponding 0-1 integer linear programming formulation is:

min
n∑

i1=1

n∑
i2=1

· · ·
n∑

is=1

ci1i2...ispi1i2...is

subject to :
n∑

i2=1

n∑
i3=1

· · ·
n∑

is=1

pi1i2...is = 1 for i1 with 1 ≤ i1 ≤ n

n∑
i1=1

n∑
i3=1

· · ·
n∑

is=1

pi1i2...is = 1 for i2 with 1 ≤ i2 ≤ n

. . .
n∑

i1=1

n∑
i2=1

· · ·
n∑

is−1=1

pi1i2...is = 1 for is with 1 ≤ is ≤ n

(3.3)

where pi1i2...is ∈ {0, 1} for all i1, i2, . . . , is with 1 ≤ i1, i2, . . . , is ≤ n.

For the case of an assignment formulated as a matching in a multipartite hyper-
graph, consider weighted hyperedges E Then the cost of a matching is:

c(M) =
∑

(x1,x2,...,xs)∈M

c(x1, x2, . . . , xs) (3.4)

where the objective is to minimize c(M).
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3.1 State of the art

The multidimensional assignment problem has been studied since the fifties by [Schell, 1955]
and [Koopmans and Beckmann, 1957] and was formally described by [Pierskalla, 1968].

[Karp, 1972] showed that the problem of deciding whether there exists a 3-dimensional
matching of size at least k is NP-complete and, consequently, the optimization prob-
lem of finding the largest 3-dimensional matching is NP-hard. [Frieze, 1974] proposed
for the first time an integer programming formulation for the 3AP. In general, the
Multidimensional Matching Problem (MMP), abbreviated sMP, is a particular case
of the MAP in which we assign a value of 0 to the present relations and a value
of 1 to those non present, the objective is to find a multidimensional assignment
of minimum cost. The optimal assignment will contain the relations of the largest
s-dimensional matching plus some non present relations which we need to discard.
The MMP is NP-hard and, indeed, the MAP is NP-hard for every s ≥ 3 as shown in
[Garey and Johnson, 1979].

It has been proven that unless P = NP, there is no ε-approximate polynomial time
algorithm for the multidimensional assignment problem [Crama and Spieksma, 1992].
However, the special case of 3AP where a distance, verifying the triangle inequalities,
is defined on the elements from each dimension, and the cost of the weight is either
the sum of the lengths of its distances or the sum of the lengths of its two shortest
distances was proven to be ε-approximable [Crama and Spieksma, 1992].

In the middle nineties [Spieksma and Woeginger, 1996] studied two more geomet-
ric special cases of the 3AP: given are three setsX1, X2, X3 of n points in the Euclidean
plane one possible goal is to find a partition of X1 ∪ X2 ∪ X3 into n three-colored
triangles such that (a) the total circumference of all triangles is minimum or (b) the
total area of all triangles is minimum. The special cases were proven to be NP-hard.

Even when the MAP is NP-hard, [Grundel et al., 2004] studied weights coefficients
from three different random distribution: uniform, exponential and standard normal.
They showed that in the cases of uniform and exponential distributions, experimental
data indicates that the mean optimal value converges to zero when the problem
size increases. Such results allow to have an estimation about the optimal value of
instances generated under some random distributions.

About the same time, [Grundel and Pardalos, 2005] proposed a test problem gen-
erator for the MAP. The advantage of this generator is that it guarantees the existence
of a unique solution. Its main disadvantage falls in its time complexity which is ex-
ponential.

The most studied case of MAP is the 3AP, though in recent years several algo-
rithms and heuristics were proposed for the sAP.

In order to provide a better summary and analysis about the state-of-the-art for
the multidimensional assignment problem a general classification of the developed
techniques was created. The next subsections describe such categories.
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3.1.1 Exact algorithms

There are just a few papers that describe algorithms to solve exactly the multidimen-
sional assignment problem. Even when several techniques can be applied aimed to
find optimal solutions in a shorter time, as soon as the size of the instance starts to
grow, the exponential time complexity of any exact technique is unavoidable.

One of the first algorithms was developed by [Balas and Saltzman, 1991]. They
presented a branch and bound algorithm for 3AP. In their work, they apply a La-
grangian relaxation which incorporates a class of facet inequalities in order to find
lower bounds. The apply a primal heuristic based on the principle of minimizing max-
imum regret and a variable depth interchange phase for finding upper bounds. The
results are reported for instances with n ∈ {4, 6, . . . , 24, 26} vertices and uniformly
random generated weights w(x) ∈ {0, . . . , 100}, obtaining running times from some
seconds to some minutes. The time complexity of this algorithm is not presented but,
based on the time results, it seems to be approximately O(2n).

A more recent technique was presented by [Magos and Mourtos, 2009]. They stud-
ied the classes of Clique facets for the axial and planar assignment polytopes, then
they developed a polynomial-time separation procedure which allows to incorporate
such facet classes within an Integer Programming solver. This reduced the solving
time of instances of the multidimensional assignment problem. Some of the studied
facets that they considered were taken from the work of [Balas and Saltzman, 1991],
in this way, this work represents an improvement of the older Branch and Bound
algorithm of [Balas and Saltzman, 1991].

3.1.2 Approximate algorithms

The approximate algorithms are valid only for some particular cases of the geometric
version of the 3AP, however, they have been widely studied and many authors have
developed several heuristics.

Early in the nineties, [Crama and Spieksma, 1992] described the first approxima-
tion algorithms for the special case of the 3AP when the costs are associated with the
triangle inequalities. In their work it was showed that the geometric special cases of
the 3AP are ε-approximate and proposed 1/2 and 1/3 approximate algorithms, i. e.
heuristics which always deliver a feasible solution whose cost is at most 3/2 and 4/3,
respectively, the optimal cost. The time complexity of such heuristics is O(n3).

Some years later, [Bandelt et al., 1994] extended the ideas previously provided by
[Crama and Spieksma, 1992] to more than three dimensions. [Bandelt et al., 1994]
defined four cost functions that allow to deal with the problem similarly to the geo-
metric version in three dimensions. Several approximation algorithms and heuristics
for each particular case were proposed.

Later in the nineties, [Johnsson et al., 1998] described a slightly different version
of the geometric special case of the 3AP in which it is required to find a partition
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set of n = 3p points into p disjoint subsets, each consisting of three points; the
objective is to minimize the total cost of the triplets. They provide some of the first
ideas of the possible approximate algorithms for this problem but could not provide a
proper upper bound. Instead, they developed other heuristics based on tabu-search,
simulated annealing and genetic algorithms.

In recent years, [Kuroki and Matsui, 2009] also extended the geometric special
case of 3AP to the d-dimensional space and the weight of an edge is defined by the
square of the Euclidean distance between its two endpoints. Their work reduced the
previously known bound from (4− 6/s) to (5/2− 3/s) times the optimal value. The
time complexity of this approximation algorithm is O(s · n4)

3.1.3 Local search heuristics

In this field there is a wide variety of methods that consider different classes and
sizes of neighborhoods. The main characteristic of this type of technique is that it
evaluates some selected neighborhood and if some improvement could be obtained
then the procedure moves to the corresponding new solution. Most of the developed
techniques evaluate several neighborhoods in some predefined way and end when no
improvement is obtained.

Some of the first local search heuristics were described by [Balas and Saltzman, 1991]
for the 3AP. They described a local search heuristic called variable depth inter-
change heuristic which consists on considering two triplets of vertices of a cur-
rent feasible solution and look for a combination that improves the cost of both
triplets. Other heuristics called greedy, reduced cost, and minimax-regret were pro-
posed and are detailed explained in the same work. All the heuristics were tested
on instances with n ∈ {20, 25, . . . , 65, 70} vertices and uniformly random generated
weights w(x) ∈ {0, . . . , 1000}, obtaining running times of less than a minute. The
time complexity for the greedy and reduced cost heuristics is O(n2), for the minimax-
regret heuristic is O(n3 log n) and for the variable depth interchange heuristic is
O(
(
n
2

)
) ∼ O(n2).

Early in the 2000s, [Robertson, 2001] presented a greedy randomized adaptive
search procedure (GRASP) for the MAP which considered as part of its machinery
the four heuristics proposed by [Balas and Saltzman, 1991]. A GRASP is a multistart
metaheuristic for combinatorial optimization problems. It consists of a construction
procedure based on a greedy randomized algorithm of a local search. The four variants
of the GRASP were tested on instances with s = 5 and n = 25. The experimental
evaluation was focused on instances of the data association problem that appear in
the centralized multisensor multitarget tracking systems. Even when all the heuristics
are described in detail the time complexity and the effectiveness of such heuristics is
not reported.

About the same time, [Huang and Lim, 2003] developed a heuristic framework
called Fragmental Optimization for the MAP. This heuristic consists in an iterative
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improvement algorithm that follows the principle of easy things first. The goal of
the heuristic is to optimize a portion or fragment of the entire problem iteratively.
The experimental evaluation was performed on the data set instances provided by
[Balas and Saltzman, 1991] and by [Crama and Spieksma, 1992], obtaining the opti-
mal values in all data sets. The running times showed an improvement in comparison
with the previous works.

Some years later, [Aiex et al., 2005] presented another GRASP with path relink-
ing for the 3AP. Path relinking is an intensification strategy that explores trajectories
that connect high-quality solutions while the iterations of the GRASP occurs. Seven
variants of such heuristics were developed and evaluated on the instances provided
by [Balas and Saltzman, 1991] and by [Crama and Spieksma, 1992]. The time com-
plexity of all the heuristics is O(n3) for each iteration. The reported results consider
executions that go from 100 until 10,000 iterations.

Later in the 2000s, [Gutin et al., 2007] carried out the worst-case analysis of the
greedy and max-regret heuristics proposed by [Balas and Saltzman, 1991]. They
showed that max-regret may find the unique worst possible solution for some instances
of the 3AP. Finally, two new heuristics based on max-regret are proposed but its
experimental evaluation was not performed.

Early in the 2010s, [Karapetyan and Gutin, 2011a] proposed several local search
heuristics and generalized some others for the MAP. The most representative heuris-
tics were called dimensionwise variation heuristics, k-opt, and variable depth inter-
change. A dimensionwise variation heuristic consists in a simplification of a sAP to a
2AP. This allows to explore neighborhoods of size O(n!) and to find a local optimum
on it. The k-opt heuristics considers a feasible solution and takes a set of k vectors
from the feasible assignment and optimizes them such that a local optimum over such
vectors is achieved. The used values for k were 2 and 3. The variable depth inter-
change heuristics is a variation of the one proposed by [Balas and Saltzman, 1991]. In
contrast with many of the previous authors, [Karapetyan and Gutin, 2011a] proposed
several new families of instances and evaluated their heuristics on each. The families of
instances consider problem sizes with s = {3, 4, 5, 6, 7, 8} and n = {150, 50, 30, 18, 12, 8},
respectively. The reported results showed a relative solution error of approximately
5% in most of the instances with the best heuristic. The dimensionwise variation
heuristic was proven to be the best local search heuristic for the MAP in the last
years.

In recent years, [Nguyen et al., 2014] developed a new approach based on cross-
entropy methods for the MAP. Cross-entropy methods can be applied to combinatorial
optimization problems. These methods consist on the construction of a random se-
quence of solutions which converges probabilistically to the optimal or near-optimal
solution. This methods have two main steps: in the first one are generated random
data according to some pre-established mechanism; in the second step the parame-
ters of the random mechanism are updated to produce a better sample in the next
iteration. The experimental evaluation was performed on the data set provided by

UAM Azcapotzalco Sergio Pérez PhD in Optimization
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[Grundel and Pardalos, 2005] and the reported results showed a relative solution er-
ror of approximately 5% which is similar to the obtained by the dimensionwise varia-
tion heuristics, however the test bed used by [Karapetyan and Gutin, 2011a] contains
larger problem sizes.

3.1.4 Evolutionary algorithms

An evolutionary algorithm is a generic population based metaheuristic optimization
technique. This type of algorithms uses mechanisms inspired by biological evolution,
such as reproduction, mutation, recombination, and selection. The procedure starts
with a set of candidate solutions having the role of population and, through a fitness
functions, the quality of the solutions is measured. This type of technique has proven
to perform well approximating solutions to many optimization problems.

One of the first genetic algorithms in this line was proposed by [Magyar et al., 2000]
for the 3MP. They proposed a genetic algorithm hybridized with some local search
heuristics, which also contains an adaptive control parameters that tunes the pa-
rameters at the running time. Even though they used their own random generated
data set, they claimed to obtain a relative solution error that is approximately 3.7%
away from the optimal solutions, which improved the earlier results obtained by
[Johnsson et al., 1998].

In the middle 2000s, [Huang and Lim, 2006] designed a new genetic algorithm
hybridized with a local search heuristic for the 3AP, which was the base for the
designing of more powerful heuristics for the MAP. A generic genetic algorithm was
considered but a local search heuristic replaced the mutation operator. The local
search heuristic they used consists on a simplification of a 3AP to a 2AP and this idea
was the base for the creation of the dimensionwise variation heuristics later proposed
by [Karapetyan and Gutin, 2011a]. Until that moment, this heuristic outperformed
all the previous heuristics for the 3AP. The experimental evaluation was performed
by considering the classical data set provided by [Balas and Saltzman, 1991].

Even when the concept of memetic algorithm (which is a genetic algorithm com-
bined with a local search heuristic) is older [Moscato, 1989], the term was popularized
later in the 2000s and some authors preferred to use the term genetic algorithm hy-
bridized with a local search heuristic.

Some years later, [Bozdogan and Efe, 2008] designed an ant colony optimization
heuristic for the MAP. This type of heuristic consists on iteratively constructing
random candidate solutions which are biased to be in good regions of the problem
space under the influence of two forces: information about the specific problem and
pheromone trails. The information about the specific problem is gathered from a
fitness function to be optimized whereas the pheromone trail is a specialty of the ant
colony optimization achieved by the positive feedback from ant paths constructed
throughout the algorithm. This method did not represent a significant improvement
however the authors let some open research lines in order to build better heuristics
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with this ideas.

Late in the 2000s, [Gutin and Karapetyan, 2009] proposed the first ideas for a
new memetic algorithm for the MAP which was pretended to be combined with
the dimensionwise variation heuristic. At the same time, such work described the
preliminary ideas for the development of a general purpose memetic algorithm aimed
to be able to vary the population size at the running time of the algorithm in order to
start with a lot of individuals and to have the best ones to the end of the execution.

Early in the 2010s, [Karapetyan and Gutin, 2011b] finally described a new general
purpose memetic algorithm which was able to vary the population size during the
running time. The first sections of the work describe how to build such a memetic
algorithm and how its parameters should be tuned in order to vary the population size.
By the end of such work, some families of instances of the MAP are solved by using this
technique and the results are compared against the best known heuristics for the MAP.
The obtained results through its experimental evaluation showed a relative solution
error of approximately 1% which outperformed all the previous known heuristics for
the MAP and represents the state of the art for solving the MAP.

3.2 Families of instances for the MAP

Several families of instances have been proposed to evaluate the effectiveness of al-
gorithms and heuristics for the MAP. Here we summarize the most relevant families,
which are used in this thesis. The main difference between families lies in the way we
set the weight of the tuples of the corresponding instance.

The most common family of instances is the Random family that considers an
independent weight distribution. Other families were introduced in the works of
[Karapetyan and Gutin, 2011a] and [Karapetyan and Gutin, 2011b] with so-called de-
composable weights such as Clique, Square Root, Geometric and Product.

3.2.1 The Random family

This family has the property that the weight of each tuple is assigned with a value
generated uniformly at random over some closed interval [a, b].

The best known family of instances of this type was provided by [Balas and Saltzman, 1991]
for the 3AP. It includes 60 test instances with problem size s = 3 and n ∈ {4, 6, . . . , 24, 26}.
For each n, five instances were created with the integer weight coefficients w(x) gen-
erated uniformly at random in the interval [0, 100]. The names of the instances are
referred in this work as s bs n where s = 3, bs comes from Balas and Saltzman and
n is the number of vertices.

A second family of instances of this type was provided by [Magos and Mourtos, 2009]
for the 4AP, 5AP, and 6AP. It includes 200 test instances with three different dimen-
sion sizes: s = 4 and n ∈ {10, 11, . . . , 19, 20}; s = 5 and n ∈ {7, 8, . . . , 13, 14}; s = 6
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and n = 8. For each combination of s and n, ten instances were created with the
integer weight coefficients w(x) generated uniformly at random in the interval [1, ns].
The names of the instances are referred in this work as s axial n where s is the number
of dimensions and n is the number of vertices.

A third family of instances was provided by [Karapetyan and Gutin, 2011a] and
[Karapetyan and Gutin, 2011b]. It includes 120 test instances with four different
dimension sizes: s = 3 and n ∈ {40, 70, 100}; s = 4 and n ∈ {20, 30, 40}; s = 5 and
n ∈ {15, 18, 25}; s = 6 and n ∈ {12, 15, 18}. For each combination of s and n, ten
instances were randomly generated. The names of the instances are referred in this
work as srn where s is the number of dimensions, r comes from the word Random
and n is the number of vertices.

3.2.2 The Clique family

This family of instances has weights defined through s-partite graphs G = (X1∪· · ·∪
Xs, E). The weight w(e) of every edge e ∈ E was generated uniformly at random in
the interval [1, 100]. Let C be a clique in G and let EC be the set of edges induced by
this clique, then the weight of a vector, corresponding to the clique C, is given by:

wC(EC) =
∑
e∈EC

w(e). (3.5)

A specific set of instances for this family was provided by [Karapetyan and Gutin, 2011b],
which includes 120 test instances with four different dimension sizes: s = 3 and
n ∈ {40, 70, 100}; s = 4 and n ∈ {20, 30, 40}; s = 5 and n ∈ {15, 18, 25}; s = 6
and n ∈ {12, 15, 18}. For each combination of s and n, ten instances were randomly
generated. The names of the instances are referred in this work as scqn where s is
the number of dimensions, cq comes from the word Clique and n is the number of
vertices.

3.2.3 The Square Root family

This family of instances is similar to the Clique family. The main difference is that
it considers the square root of a sum of squares of the involved weights, as in Equa-
tion 3.6.

wSR(EC) =

√∑
e∈EC

w(e)2. (3.6)

A specific set of instances for this family was provided by [Karapetyan and Gutin, 2011b]
under the same conditions as for the Clique family. The names of the instances are
referred in this work as ssqn where s is the number of dimensions, sq comes from the
word square root and n is the number of vertices.
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3.2.4 The Geometric family

This family of instances is a special case of the Clique family. In this case, the sets
X1, . . . , Xs corresponds to s sets of points in a s-dimensional Euclidean space, and the
distance between two points p ∈ Xi and q ∈ Xj is defined by the Euclidean distance.

dG(p, q) =
√

(px − qx)2 + (py − qy)2. (3.7)

It has been proven by [Spieksma and Woeginger, 1996] that the Geometric family
of instances for s ≥ 3 is NP -hard but they can be ε-approximated.

A specific set of instances for this family was provided by [Karapetyan and Gutin, 2011a],
which includes 60 test instances with six different dimension sizes: s = 3 and n = 150;
s = 4 and n = 50; s = 5 and n = 30; s = 6 and n = 18; s = 7 and n = 12; s = 8
and n = 8. For each combination of s and n, ten instances were randomly generated.
The names of the instances are referred in this work as sgn where s is the number of
dimensions, g comes from the word Geometric and n is the number of vertices.

3.2.5 The Product family

This family of instances was originally proposed by [Burkard et al., 1996]. In the
Product family, the weight of a vector x is defined as follows:

wP (x) =
s∏
j=1

ajxj (3.8)

where aj is an array of n values, selected uniformly at random from {1, . . . , 10}.
A specific set of instances for this family was provided by [Karapetyan and Gutin, 2011a]

under the same conditions as for the Geometric family. The names of the instances
are referred in this work as spn where s is the number of dimensions, p comes from
the word Product and n is the number of vertices.

3.3 Exact algorithms

In this section we describe some basic algorithms and a state-of-the-art implementa-
tion to solve the MAP.

There are many ways to represent a solution of a MAP but the most represen-
tative is a matrix of size n × s where each of the n rows is a vector of size s and
represents a selected tuple from the set of hyperedges E. Such representation allows
easily to validate the feasibility of an instance because it reduces to verifying that
all the elements from each column are different between them and belong to the set
{1, . . . , n}.
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3.3.1 Brute force

A natural solution consists in evaluating all the possible combinations from Equa-
tion 3.2 to find the optimum. This gives a time complexity of O(n!s−1) and a space
complexity of O(n · s).

Algorithm 5 shows a generic implementation through recursion of the Brute Force
algorithm for the MAP which generates all the possible assignments of a sAP through
the generation of all the possible combinations of permutations of sets with n elements.
At each recursive call, the i-th column of the matrix A is assigned with a permutation
of the corresponding vector xi. At each call of the base case a new possible assignment
is evaluated and the best one is updated according to the best (minimum) cost.

The relevance of this technique is due to some local search heuristics, as 2-opt and
3-opt [Karapetyan and Gutin, 2011a], using this technique as part of their machinery
and, it offers a better option for solving very small instances of sAP (at least in
comparison with more complex techniques).

Algorithm 5: The brute force algorithm for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set An×s := 0;
2 Set A1 := {1, . . . , n};
3 Set bestCost := ∞;
4 Set bestAssignment := A;
5 Call BruteForce(s, A);
6 BruteForce ← function(currentDimension, A){
7 if currentDimension = 1 then
8 if bestCost > calculateCost(A) then
9 bestCost := calculateCost(A);

10 bestAssignment := A;

11 return;

12 Set xcurrentDimension := {1, . . . , n};
13 Set origin := x;
14 repeat
15 Set AcurrentDimension = xcurrentDimension;

// Ai refers to the column i of the matrix A
16 Call BruteForce(currentDimension - 1, A);
17 Set y := next premutation(x);

18 until x = origin;
19 };
20 return bestAssignment;
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The multidimensional assignment problem 39

3.3.2 Wise brute force

This approach consists in generating all the first O(n!s−2) possible Cartesian products
of permutations for the first s−1 sets and then applying a 2AP solution for each com-
bination against the last set. This allows a complexity time reduction from O(n!s−1)
to O(n!s−2n3), and the space complexity changes from O(n · s) to O(n · s+ n2).

Algorithm 6 shows the improved version of the brute force algorithm for the
MAP. The main difference against the brute force algorithm is that in this case
there is one recursion level less by stopping at currentDimension = 2 instead of at
currentDimension = 1 and in the base case the optimal permutation of the column 2,
for the current state of A, is found through the solving of a 2AP. This allows to reduce
the complexity of this level from O(n!) to O(n3) which is the general complexity of
solving a 2AP.

This algorithm is relevant because it provided the first ideas to the creation of the
dimensionwise variation heuristics.

3.3.3 Dynamic programming reduction

This approach consists in reducing the set of all possible candidates from O(n!s−1) to
O(2(s−1)·n) by memorizing the optimal solution for some sub-problems of the original
problem in a similar way that it is performed in the dynamic programming solution
for the Traveling Salesman Problem proposed simultaneously by [Bellman, 1962] and
[Held and Karp, 1962].

Let S1, . . . , Ss be sets of n vertices each. Lets denote by Ski the set of any k vertices
of Si, for 1 ≤ i ≤ n, and let Xk = {k}×S2×· · ·×Ss be all members of the Cartesian
product between the elements of all the sets. Recall that the set S1 can be fixed. An
appropriate subproblem should be defined with an optimal partial solution for the
MAP. Suppose we take one vector x ∈ X. The corresponding vertices xi ∈ x should
be deleted from each set Si, then an optimal partial solution is calculated for the rest
of the vertices. The optimal solution consists in choosing the vector x whose sum
with its corresponding optimal partial solution is minimum. Then the appropriate
subproblem is established.

For a set of subsets of vertices S2 ⊆ {1, . . . , n}, . . . , Ss ⊆ {1, . . . , n} with |S2| =
· · · = |Ss| = k which includes a vector xk ∈ Xk (here Xk = {k} × S2 × · · · × Ss)
where xk = (k, xk2, . . . , x

k
s), let C(S2, . . . , Ss) be the cost of the minimum assignment

that considers |S2| = · · · = |Ss| = k vectors with vertices in the corresponding sets
S2, . . . , Ss.

When k = 0, it is established C(S2, . . . , Ss) = 0 since the assignment has no
vectors.

In order to define C(S2, . . . , Ss) in terms of smaller subproblems, one vector xk =
(k, xk2, . . . , x

k
s) should be selected such that xki ∈ Si for all 2 ≤ i ≤ s. All the vectors

xk ∈ Xk should be evaluated in order to get the best xk such that C(S2, . . . , Ss) =
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Algorithm 6: The wise brute force algorithm for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set An×s := 0;
2 Set A1 := {1, . . . , n};
3 Set bestCost := ∞;
4 Set bestAssignment := A;
5 Call WiseBruteForce(s, A);
6 WiseBruteForce ← function(currentDimension, A){
7 if currentDimension = 2 then
8 Set A2 = {1, . . . , n};
9 Fix the columns 1, 3, . . . , s against the elements from the column 2;

10 Generate the matrix Mn×n of the corresponding 2AP and solve it;
11 Let A := 2AP (Mn×n) be the solution of the corresponding 2AP;
12 if bestCost > calculateCost(A) then
13 bestCost := calculateCost(A);
14 bestAssignment := A;

15 return;

16 Set xcurrentDimension := {1, . . . , n};
17 Set origin := x;
18 repeat
19 Set AcurrentDimension = xcurrentDimension;

// Ai refers to the column i of the matrix A
20 Call WiseBruteForce(currentDimension - 1, A);
21 Set y := next premutation(x);

22 until x = origin;
23 };
24 return bestAssignment;

minxk∈Xk C(S2 − xk2, . . . , Ss − xks) + w(xk)

A recursive function could be stated in the following way:

C(S2, . . . , Ss) =


0 if |S2| = · · · = |Ss| = 0

minxk∈Xk (C(S2 − xk2, . . . , Ss − xks) + w(xk)) if |S2| = · · · = |Ss| ≥ 1
(3.9)

As we can see in Equation 3.9, at each recursive call one vertex is subtracted from
each set so that the size of all the sets always remains equilibrated. The process
of selecting the vector with the minimum weight among all the available vectors
from Xk takes O(ks−1) time. The possible state of a vertex xi ∈ Si at the step
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k is to be present or not, therefore the total number of possible states is 2(s−1)·n.
By applying a memoization technique we can avoid repeated recursive calls. The
total time complexity for this algorithm is O(2(s−1)·nns−1) which is better than the
previously described algorithms but, still exponential. A disadvantage of this solution
is the requirement of exponential space, which is of O(2(s−1)·n), since it needs to
memorize the answers for the derived substates.

Algorithm 7 shows the general structure of the procedure for the dynamic pro-
gramming reduction. The interesting part of this algorithm lies in the AvailableTuples
function because it consist in obtaining the possible tuples x based on the turned on
bits from the bit set bitSetS. This function should carefully select the x vectors such
that prevent repeated vectors for the next iterations. The algorithm returns the best
cost of a partial assignment and, by the end of the algorithm, returns the optimal
assignment.

This algorithm is relevant because it provides a better upper bound on the com-
plexity to optimally solve a particular instance of a sAP of size n.

Algorithm 7: The dynamic programming reduction for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
Result: A: The min cost assignment as a matrix of size n× s.

1 Let bitSetS be a bitset of size n× s;
2 Set bitSetS := (1 << (n× s))− 1;
// This turned on all the bits of bitSetS

3 Set result := DynamicProgrammingReduction(bitSetS);
4 DynamicProgrammingReduction ← function(bitSetS){
5 if bitSetS = 0 then
6 return {0, ∅};
7 bestCost := ∞;
8 bestPartialA := ∅;
// The function AvailableTuples extract all the available tuples

considering the turned on bits from the given bitset

9 for x ∈ AvailableTuples(bitSetS) do
10 Turn off the corresponding bits of bitSetS according to the elemnents in x;
11 Set result := DynamicProgrammingReduction(bitSetS);
12 if result.cost + cost(x) < bestCost then
13 bestCost := result.cost;
14 bestPartialA := result.assignment ∪ x;

15 return {bestCost, bestPartialA};
16 };
17 return result.assignment ;
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3.3.4 MAP-Gurobi

The 0-1 integer linear programming formulation, provided in Equation 4.1, was im-
plemented by using the libraries from Gurobi Optimizer 6.01. This implementa-
tion was called MAP-Gurobi. Gurobi Optimizer is designed from the ground up
to exploit modern architectures and multi-core processors, using the most advanced
implementations of the latest algorithms. Even when Gurobi Optimizer is a com-
mercial software, it is easy to get a free academic version for purposes of research
[Gurobi Optimization, 2016].

This implementation provides us with a very strong machinery to solve small
instances of sAP and here we used it as part of the proposed heuristics. In order to
provide an approach on the time and space complexity for this algorithm, two different
sets of small and medium size families of instances were solved. We also tried another
family of larger instances. However, our implementation only had success with the
smaller instances of that set, the rest of the instances were not solved due to the
limitation of computer power. When this solver has to tackle problems with a very
large search space, the program crashes due to the large amount of memory required
to solve this type of instances.

The results of this experiments are shown in the next subsection.

3.3.5 Results

The three first algorithms were implemented specifically for the 3AP, however the
brute force algorithm becomes intractable for n ≥ 8, the wise brute force algorithm
for n ≥ 10 and the dynamic programming reduction for n ≥ 13. Even when the three
algorithms are exponential, there is a considerable difference between the complexity
of each algorithm.

Figures 3.2, 3.3, and 3.4 show the difference between the growth of each curve as
soon as the number of vertices n is increased. The scale of the complexity function
is logarithmic in order to show the growth of all curves simultaneously. The number
of dimensions have a significant impact on the curves growth. In particular, for 5AP
it can be observed that the behavior of the brute force algorithm and the wise brute
force algorithm tends to be similar, whereas the dynamic programming reduction
grows slowly. Do not forget that all three curves have at least exponential growth,
however, the first two are factorials which is worse than exponential.

In order to evaluate the performance of the MAP-Gurobi implementation several
the families of instances were considered.

MAP-Gurobi was implemented in C++ and its performance was evaluated on a
platform with an Intel Core i5-3210M 2.5 GHz processor with 4 GB of RAM under
Windows 8.

The smallest problem size family of instances is sbsn ([Balas and Saltzman, 1991]).

1The Gurobi Optimizer is the state-of-the-art solver for mathematical programming.
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Figure 3.2: Complexity curves (in logarithmic scale) of exact algorithms for 3AP.

Table 3.1 shows the running times for the instances sbsn solved by MAP-Gurobi.
Since Gurobi is a state of the art optimization solver for integer programming, it can
be observed how this family of instances was solved by MAP-Gurobi without any
problem in approximately one second. The disadvantage is that this set of instances
do not allow us to have any guess about the complexity of MAP-Gurobi to solve 3AP.

Table 3.1: Computational results for the family of instances sbsn (MAP-Gurobi)

Instance Optimum Variables Seconds

3 bs 4 42.2 64 0.1
3 bs 6 40.2 216 0.1
3 bs 8 23.8 512 0.1

3 bs 10 19.0 1000 0.1
3 bs 12 15.6 1728 0.1
3 bs 14 10.0 2744 0.2
3 bs 16 10.0 4096 0.3
3 bs 18 6.4 5832 0.4
3 bs 20 4.8 8000 0.9
3 bs 22 4.0 10648 0.8
3 bs 24 1.8 13824 0.9
3 bs 26 1.0 17576 1.3

A bigger problem size family of instances is saxialn ([Magos and Mourtos, 2009]).
Table 3.2 shows the corresponding running times for this family of instances. The
results obtained by Magos’ algorithm are shown just for an illustrative reference be-
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Figure 3.3: Complexity curves (in logarithmic scale) of exact algorithms for 4AP.

Figure 3.4: Complexity curves (in logarithmic scale) of exact algorithms for 5AP.

cause we did not implement their algorithm. The time complexity for this algorithm
was also not provided. In order to provide a guess on the exponential function that
is related to the complexity of the MAP-Gurobi algorithm, we considered a factor
called relative increment. This factor allows us to observe the proportional incre-
ment between solving two instances with the same number of dimensions but whose
difference in the number of vertices is one. For the family of instances 4axialn the
average relative increment of the running times for the Magos’ algorithm was about
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1.8 as well as for MAP-Gurobi, hence the experimental evaluation shows that the
complexity function is approximately O(2n). In contrast, for the family of instances
5axialn the average relative increment was 3.7 for the Magos’ algorithm and 2.7 for
MAP-Gurobi, hence the experimental evaluation shows that the complexity functions
are approximately O(4n) and O(3n), respectively. Since there is only one instance for
the family of instances 6axialn it is not possible to provide any guess. By considering
these results, a good guess for the complexity of sAP by using MAP-Gurobi could be
O((s− 2)n) for s ∈ {4, 5}.

Table 3.2: Computational results for the family of instances saxialn (Magos and
Mourtos, MAP-Gurobi)

Magos’ algorithm MAP Gurobi

Instance Optimum Variables Seconds Relative Inc. Seconds Relative Inc.

4 axial 10 480.3 10000 28 - 1.3 -
4 axial 11 603.0 14641 45 1.6 2.8 2.1
4 axial 12 711.3 20736 80 1.7 3.2 1.1
4 axial 13 839.7 28561 144 1.8 7.5 2.3
4 axial 14 831.3 38416 232 1.6 10.6 1.4
4 axial 15 822.1 50625 384 1.6 24.9 2.3
4 axial 16 736.9 65536 686 1.7 45.0 1.8
4 axial 17 643.5 83521 794 1.1 91.7 2.0
4 axial 18 608.7 104976 2031 2.5 132.7 1.4
4 axial 19 533.5 130321 5142 2.5 147.4 1.1
4 axial 20 503.8 160000 8714 1.6 336.3 2.2
5 axial 7 407.8 16807 8 - 1.4 -
5 axial 8 587.3 32768 47 5.8 4.8 3.4
5 axial 9 471.9 59049 188 4.0 14.0 2.9

5 axial 10 341.3 100000 882 4.6 30.4 2.1
5 axial 11 274.4 161051 4811 5.4 84.0 2.7
5 axial 12 219.7 248832 10328 2.1 300.4 3.5
5 axial 13 177.5 371293 19104 1.8 704.3 2.3
5 axial 14 141.1 537824 42141 2.2 1311.8 1.8
6 axial 8 156.9 262144 19812 - 107.9 -

The largest problem size instances were provided by [Karapetyan and Gutin, 2011b].
Tables 3.3, 3.4, and 3.5 show the corresponding running times for three families of
instances. It can be observed that all the instances with 3 dimensions were solved
to optimality but there is a big difference in terms of the solving time between each
family of instances. Some of the instances in 4, 5, and 6 dimensions could not be
solved. It is important to highlight that MAP-Gurobi found optimal values for some
instances for which state-of-the-art heuristics could not find the optimal value. This
is highlighted in bold in the Optimum columns found on each table. In this case,
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it was not possible to provide a guess on the time complexity function because the
corresponding relative increment factor can not be calculated. Further experiments
could be performed by considering instances of consecutive problem sizes for each
family, however the estimation provided thanks to the family of instances saxialn
was good enough to obtain the required time complexity approach.

In conclusion, considering the running times for the family of instances saxialn a
fair guess to the time complexity function for MAP-Gurobi is O((s − 1)n), however
this seems to be a big upper bound since in the experimental evaluation MAP-Gurobi
performed better than this. On the other side, according to the running times for
the families of instances provided by [Karapetyan and Gutin, 2011b] was determined
that, in addition to the size of the input, weight distribution has an impact on the
running time, in particular, the experimental evaluation shows that MAP-Gurobi per-
forms better when the weights of the vectors of an instance are distributed uniformly
at random within a range among all the vectors of X.

Finally, it can be observed that more than the number of variables of an instance,
what matters is the size of the search of an instance, e. g. whereas instances with
s = 5 dimensions and n = 18 vertices were solved, instances with s = 4 dimensions
and n = 30 vertices were not solved to optimality due to the fact that 18!4 < 30!3.

Table 3.3: Computational results for the family of instances random (MAP-Gurobi)

s n Variables Previous best known Optimum found Seconds

3 40 64000 40.0 40.0 4.1
3 70 343000 70.0 70.0 11.9
3 100 1000000 100.0 100.0 50.9
4 20 160000 20.0 20.0 10.3
4 30 810000 30.0 30.0 56.5
4 40 2560000 40.0 40.0 173.0
5 15 759375 15.0 15.0 68.0
5 18 1889568 18.0 18.0 186.5
5 25 9765625 25.0 - -
6 12 2985984 12.0 12.0 493.1
6 15 11390625 15.0 - -
6 18 34012224 18.0 - -

3.4 Local search heuristics

Local search is a heuristic method for solving optimization problems. This heuristic
can be used on problems that can be formulated through minimization or maximiza-
tion functions that allow to evaluate the optimality of several candidate solutions.
Local search heuristics move from one solution to another by applying some local
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Table 3.4: Computational results for the family of instances clique (MAP-Gurobi)

s n Variables Previous best known Optimum found Second

3 40 64000 939.9 939.9 3.3
3 70 343000 1158.4 1157.1 50.7
3 100 1000000 1368.1 1345.9 771.7
4 20 160000 1901.8 1901.8 8.4
4 30 810000 2281.9 - -
4 40 2560000 2606.3 - -
5 15 759375 3110.7 3110.7 43.0
5 18 1889568 3458.6 3458.6 196.5
5 25 9765625 4192.7 - -
6 12 2985984 4505.6 4505.6 689.1
6 15 11390625 5133.4 - -
6 18 34012224 5765.5 - -

Table 3.5: Computational results for the family of instances square root (MAP-
Gurobi)

s n Variables Previous best known Optimum found Seconds

3 40 64000 610.6 606.9 2.6
3 70 343000 737.1 733.6 62.0
3 100 1000000 866.3 838.1 1062.1
4 20 160000 929.3 929.3 9.4
4 30 810000 535.1 - -
4 40 2560000 1271.4 - -
5 15 759375 1203.9 1203.9 79.4
5 18 1889568 - 1343.8 1029.0
5 25 9765625 1627.5 - -
6 12 2985984 - 1436.8 427.3
6 15 11390625 1654.6 - -
6 18 34012224 1856.3 - -

changes over a candidate solution until a better solution is found or a time bound is
elapsed.

These techniques have been proven to be some of the most successful to deal with
MAP and this is why we study them extensively in this work.

Each of the next heuristics requires an initial feasible solution A = (x1, x2, . . . , xn)
somehow generated. A feasible solution can easily be generated just by choosing a
random permutation for each set of vertices from each dimension except the first
(recall that the first dimension can be fixed), and by creating the corresponding
vectors xi from combining the i-th elements from each dimension as a valid vector
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xi ∈ A.

Lets consider a toy instance with s = 4 dimensions and n = 5 vertices. Let xji be
the i-th vertex of dimension j, weights are set up as the product of the corresponding
indices of the related vertex from each dimension, so that the weights of all the
vectors are w(x11, x

2
1, x

3
1, x

4
1) = 1, w(x11, x

2
1, x

3
1, x

4
2) = 2, . . . , w(x15, x

2
5, x

3
5, x

4
5) = 625. For

simplicity the vectors (x1a, x
2
b , x

3
c , x

4
d) will be written as (a, b, c, d) since the dimension

to which the vertex belongs can be deducted from the position of the index in the
vector.

A possible feasible solution for an instance is:

A =


x1 : (1, 2, 3, 4)
x2 : (2, 3, 1, 3)
x3 : (3, 5, 4, 2)
x4 : (4, 1, 2, 1)
x5 : (5, 4, 5, 5)

The cost of this solution is w(A) = w(x1) + w(x2) + w(x3) + w(x4) + w(x5) =
24 + 18 + 120 + 8 + 500 = 670.

The structure of a feasible solution is illustrated because it helps to exemplify the
description of the next heuristics. Note that this structure allows us to have a solution
as the desired matrix with n rows and s columns where the i-th row is related to the
vector xi ∈ A and the j-th column is related to the set of vertices Xj.

3.4.1 Basic local search heuristics

Our first approach was to develop some simple local search heuristics based on known
techniques in order to have a reference about the effectiveness of simple methods
against more robust and complex techniques.

3.4.1.1 Simple 2-opt

The simple 2-opt heuristic is a local search heuristic proposed by [Croes, 1958] for
solving the traveling salesman problem. In the traveling salesman problem (TSP), a
list of cities and the distances between each pair of cities is given. The goal is to find
the shortest route that visits each city exactly once and returns to the original city.
Given an initial route, the 2-opt heuristic consider two cities and swaps them and if
the new route is shorter than the initial route, then the feasible solution is updated.

Given a feasible solution for a sAP, this heuristic consists on choosing a dimension
d and swapping two of its vertices indexed by i, j ∈ {1, . . . , n} with i < j. If the new
solution is better than the previous one then the feasible solution is updated with the
new vectors.

Algorithm 8 shows the pseudo-code of the simple 2-opt heuristic MAP. A complete
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iteration of this heuristic considers all the dimensions and all the possible combination
of pairs from each dimension. There are

(
n
2

)
= O(n2) possible combinations of vertices

by each of the s dimensions, then one iteration takes O(sn2) time. The variable iter
helps to stop the heuristic after some maximum number of desired iterations. In our
experimental evaluation no more than 10 iterations were performed.

Algorithm 8: The simple 2−opt heuristic for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;
7 foreach d in {1, . . . , s} do
8 foreach i = 1 to n do
9 foreach j = i+ 1 to n do

10 A′ := A;
11 swap(xdi , x

d
j ) from A′;

12 if assignmentCost(A′) < assignmentCost(A) then
13 Set improved := true;
14 Set A := A′;

15 return {A};

For example, consider the feasible solution A for our toy instance and choose the
dimension d = 2 and the vertices x21 and x23. The swapping is performed as follows:[

(1, 2, 3, 4)→ (1,5, 3, 4)
(3, 5, 4, 2)→ (3,2, 4, 2)

]
.

The corresponding weights are:[
24→ 60

120→ 48

]
.

The new two vectors have a lower cost (144 = 24 + 120 > 60 + 48 = 108) so the
feasible solution A is updated.
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A =


x1 : (1,5,3,4)
x2 : (2, 3, 1, 3)
x3 : (3,2,4,2)
x4 : (4, 1, 2, 1)
x5 : (5, 4, 5, 5)

The advantage of this heuristic is that it is very easy to implement. The main
disadvantage is that the search space is of size O(sn2), which is too small compared
to the whole search space.

3.4.1.2 Inversion

The inversion heuristic is a generalization of the simple 2-opt, which was originally
proposed for the TSP. Given an initial route, two cities are selected and its corre-
sponding tour is reversed, if the new route is shorter than initial route, then the
feasible solution is updated.

Given a feasible solution for a sAP, this heuristic consists on choosing a di-
mension d and reverse the sub-array with two end point vertices indexed by i, j ∈
{1, . . . , n} with i < j. The sub-array of vertices xdi , x

d
i+1, . . . , x

d
j−1, x

d
j is reversed as

xdj , x
d
j−1, . . . , x

d
i+1, x

d
i from the feasible solution. If the new solution is better than the

previous one then the feasible solution is updated with the new vectors.

Algorithm 9 shows the pseudo-code of the inversion heuristic for MAP. A complete
iteration of this heuristic considers all the dimensions and all the possible combina-
tions of pairs from each dimension. An inversion takes O(j − i) = O(n) time. There
are

(
n
2

)
= O(n2) possible combinations of vertices by each of the s dimensions, then

one iteration takes O(sn3) time. The variable iter has the same objective as in the
2-opt heuristic.

For example, consider the feasible solution A for our toy instance and choose the
dimension d = 2 and the vertices x21 and x24. The swapping is performed as follows:

(1, 2, 3, 4)→ (1,1, 3, 4)
(2, 3, 1, 3)→ (2,5, 1, 3)
(3, 5, 4, 2)→ (3,3, 4, 2)
(4, 1, 2, 1)→ (4,2, 2, 1)

 .
The corresponding weights are: 

24→ 12
18→ 30

120→ 72
8→ 16

 .
The new two vectors have a lower cost (170 = 24+18+120+8 > 12+30+72+16 =

130) so the feasible solution A is updated.
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Algorithm 9: The inversion heuristic for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;
7 foreach d in {1, . . . , s} do
8 foreach i = 1 to n do
9 foreach j = i+ 1 to n do

10 A′ := A;
11 reversingV ertices(xdi , x

d
j ) from A′;

12 if assignmentCost(A′) < assignmentCost(A) then
13 Set improved := true;
14 Set A := A′;

15 return {A};

A =


x1 : (1,1,3,4)
x2 : (2,5,1,3)
x3 : (3,3,4,2)
x4 : (4,2,2,1)
x5 : (5, 4, 5, 5)

The advantage of this heuristic is that its search space, which is of size O(sn3), is
larger than that of the 2-opt, however it is still smaller than the whole search space
of the instance.

3.4.1.3 Circular rotation

We proposed the circular rotation heuristic as an option that considers a bigger search
space than the inversion heuristic. Furthermore the search spaces of the circular
rotation and the inversion heuristics are different. The ideas for this heuristic come
from its applying to the TSP. Given an initial route, two cities are selected and its
corresponding tour is circularly rotated one by one either left to right or right to left,
but in only one direction. Each time that a new route is shorter than the initial route,
the feasible solution is updated.

Given a feasible solution for a sAP, this heuristic consists on choosing a dimension
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d and selecting two end point vertices indexed by i, j ∈ {1, . . . , n} with i < j and
rotate the sub-array of vertices xdi , x

d
i+1, . . . , x

d
j−1, x

d
j , either left to right or right to

left, from the feasible solution. For example, in one single circular left rotation the
vertices are rotated as xdi+1, x

d
i+2, . . . , x

d
j , x

d
i . Each time that the new solution is better

than the previous one, the feasible solution is updated with the new vectors.

Algorithm 10 shows the pseudo-code of the circular rotation heuristic for MAP. A
complete iteration of this heuristic considers all the dimensions and all the possible
combinations of pairs from each dimension. A single circular rotation process takes
O(|j − i|) = O(n) time and the total number of rotations is O(|j − i|) = O(n), so
the total complexity time by a circular rotation indexed by i and j is O(n2). There
are

(
n
2

)
= O(n2) possible combinations of vertices by each of the s dimensions, then

one iteration takes O(sn4) time. The variable iter has the same objective as for the
previous heuristics.

Algorithm 10: The circular rotation heuristic for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;
7 foreach d in {1, . . . , s} do
8 foreach i = 1 to n do
9 foreach j = i+ 1 to n do

10 A′ := A;
11 x orig := xdj ;

12 repeat
13 rotateV ertices(xdi , x

d
j ) from A′;

// either left rotation or right rotation

14 if assignmentCost(A′) < assignmentCost(A) then
15 Set improved := true;
16 Set A := A′;

17 until x orig 6= xdi ;

18 return {A};

For example, consider the feasible solution A for our toy instance and choose the
dimension d = 2 and the vertices x21 and x24. A single circular left rotation is as
follows:
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(1, 2, 3, 4)→ (1,3, 3, 4)
(2, 3, 1, 3)→ (2,5, 1, 3)
(3, 5, 4, 2)→ (3,1, 4, 2)
(4, 1, 2, 1)→ (4,2, 2, 1)

 .
The corresponding weights are:

24→ 36
18→ 30

120→ 24
80→ 16

 .
The new two vectors have a lower cost (242 = 24+18+120+80 > 36+30+24+16 =

106) so the feasible solution A is updated.

A =


x1 : (1,3,3,4)
x2 : (2,5,1,3)
x3 : (3,1,4,2)
x4 : (4,2,2,1)
x5 : (5, 4, 5, 5)

It is easy to verify that the sense of the rotations does not matter since always
the best option is chosen among all the rotations. In a circular left to right rotation
the first single rotation corresponds to the same configuration as in the last rotation
of a circular right to left rotation. At the end of a circular rotation, without matter
the direction, what survives is the best configurations among all the rotations.

3.4.1.4 k−vertex permutation

We proposed the k−vertex permutation heuristic as a more exhaustive option that
considers even a larger search space than the previous heuristics. The ideas for this
heuristic come similarly from its applying to the TSP. Given an initial route, two
cities are selected and its corresponding tour starts to be exhaustively permuted such
that the best permutation is selected. This heuristic is a generalization of the three
previous heuristics. However, it is not a good idea to apply it over an arbitrary length
path.

Given a feasible solution for a sAP, this heuristic consists on choosing a dimen-
sion d and a positive integer 0 < k < n. Perform all the k! permutations of the
vertices indexed by i, i + k − 1 ∈ 1, . . . , n, that is xdi , x

d
i+1, . . . , x

d
i+k−1, x

d
i+k, from the

feasible solution. At the end of a step the new solution is at least as good as the
initial permutation because the optimal permutation over such search space is found
exhaustively.

Algorithm 11 shows the pseudo-code of the k−vertex permutation heuristic for
MAP. A complete iteration of this heuristic considers all the dimensions and all the
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The multidimensional assignment problem 54

possible valid indexes for i and i+k. A single permutation process over k vertices takes
O(k!) time and the total number of contiguous subsets of vertices is O(s(n− k+ 1)),
then one iteration takes O(s(n − k + 1)k!) time. In this case, larger values of k will
increase considerably the complexity of the heuristic. In fact, selecting k > 10 will
definitively be intractable in a conventional computer. Again the variable iter should
be given.

Algorithm 11: The contiguous k−vertex permutation heuristic for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;
7 foreach d in {1, . . . , s} do
8 foreach i = 1 to n do
9 foreach j = i+ 1 to n do

10 A′ := A;
11 x orig := xdj ;

12 foreach Permutation P of the vertices xdi , . . . , x
d
j do

13 Replace the vertices xdi , . . . , x
d
j from A′ with the

corresponding permutation P ;
14 if assignmentCost(A′) < assignmentCost(A) then
15 Set improved := true;
16 Set A := A′;

17 return {A};

For example, consider the feasible solution A for our toy instance and choose the
dimension d = 2, k = 3 and the index i = 1. A 3-vertex permutation will have to
select between the next options:

 (1, 2, 3, 4)→ (1,2, 3, 4), (1,2, 3, 4), (1,3, 3, 4), (1,3, 3, 4), (1,5, 3, 4), (1,5, 3, 4)
(2, 3, 1, 3)→ (2,3, 1, 3), (2,5, 1, 3), (2,2, 1, 3), (2,5, 1, 3), (2,2, 1, 3), (2,3, 1, 3)
(3, 5, 4, 2)→ (3,5, 4, 2), (3,3, 4, 2), (3,5, 4, 2), (3,2, 4, 2), (3,3, 4, 2), (3,2, 4, 2)

 .
The corresponding weights are:
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The multidimensional assignment problem 55

 24→ 24, 24, 36, 36, 60, 60
18→ 18, 30, 12, 30, 12, 18

120→ 120, 72, 120, 48, 72, 48

 .
The new two vectors have a lower cost (242 = 24 + 18+ 120 > 36 +30 +48 = 114)

so the feasible solution A is updated.

A =


x1 : (1,3,3,4)
x2 : (2,5,1,3)
x3 : (3,2,4,2)
x4 : (4, 1, 2, 1)
x5 : (5, 4, 5, 5)

It can be observed that the optimal permutation can be found by solving a 2AP
between the permuted k vertices and the vertices in the same vectors from the other
dimensions. In this way, the time complexity of this heuristic can be reduced from
O(s(n−k+ 1)k!) to O(s(n−k+ 1)4). This idea can be considered as the predecessor
of the dimensionwise variation heuristics.

3.4.2 Dimensionwise variation heuristics

The dimensionwise variation heuristics (DVH) are a set of heuristics that perform lo-
cal improvements over a feasible solution by applying an exact technique. Originally,
[Huang and Lim, 2006] applied this technique for 3AP and [Karapetyan and Gutin, 2011a]
extended it for more than 3 dimensions, however this technique can be more general.

In general, a DVH works as follows: at one step of the heuristic all the dimensions
but a proper subset F ⊂ {1, . . . , s} are fixed and a matrix M of size n×n with entries
Mi,j = w(vi,j) is generated. Let vdi,j denote the d-th element of the vector vi,j, all the
vectors are built according to the next function:

vdi,j =

{
xdi if d ∈ F
xdj if d 6∈ F for 1 ≤ d ≤ s . (3.10)

The corresponding 2AP can be solved in O(n3) time and gives a local optimum
for the original instance.

The simplest version of DVH allows to have only one dimension in F . However,
allowing to have bigger subsets can be explored more neighborhoods.

Algorithm 12 shows the pseudo-code of a dimensionwise variation heuristic. A
complete iteration of this heuristic consists in trying every possible non empty subset
F ∈ ℘({1, . . . , s}). There are O(2s) possible combinations, then one iteration takes
O(2sn3) time. This heuristic performs iterations until no improvement is obtained or
the required number of iterations iter are reached. Even when the theoretical time
complexity could be high, [Karapetyan and Gutin, 2011a] reported that at most ten
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iterations are performed before they converge to a local optimum. Such observation
was also verified.

Algorithm 12: The dimensionwise variation heuristic for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n. iter.
Maximum number of iterations of the heuristic.

Result: A: The min cost assignment as a matrix of size n× s.
1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set bestCost := assignmentCost(A);
4 Set iterations := 1;
5 while improved = true and iterations ≤ iter do
6 Set improved := false;
7 Set iterations := iterations +1;
8 foreach F ∈ {℘({1, . . . , s})\∅} do
9 By considering the Equation 3.10, obtain the matrix Mn×n for the

corresponding 2AP;
10 Set A′ := HungarianMethod(Mn×n) ;
11 if assignmentCost(A′) < bestCost then
12 Set improved := true;
13 Set bestCost := assignmentCost(A′);
14 Map the solution A′ to the corresponding feasible solution onto A;

15 return {A};

In order to exemplify the reduction of a feasible solution of a sAP to a 2AP
consider the previous randomly generated feasible solution A (for the toy instance)
and pick the set F = {2, 4}, then M is obtained as:

(1, 2, 3, 4) (2, 2, 1, 4) (3,2,4,4) (4, 2, 2, 4) (5, 2, 5, 4)
(1, 3, 3, 3) (2, 3, 1, 3) (3, 3, 4, 3) (4,3,2,3) (5, 3, 5, 3)
(1,5,3,2) (2, 5, 1, 2) (3, 5, 4, 2) (4, 5, 2, 2) (5, 5, 5, 2)
(1, 1, 3, 1) (2, 1, 1, 1) (3, 1, 4, 1) (4, 1, 2, 1) (5,1,5,1)
(1, 4, 3, 5) (2,4,1,5) (3, 4, 4, 5) (4, 4, 2, 5) (5, 4, 5, 5)

→


24 16 96 64 200
27 18 108 72 225
30 20 120 80 250

3 2 12 8 25
60 40 240 160 500


The values marked in bold denote the new vectors that will be considered as the

new feasible solution after solving the corresponding 2AP. Then, the new feasible
solution is:
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The multidimensional assignment problem 57

A′ =


x1
′

: (1, 5, 3, 2)

x2
′

: (2, 4, 1, 5)

x3
′

: (3, 2, 4, 4)

x4
′

: (4, 3, 2, 3)

x5
′

: (5, 1, 5, 1)

The cost of the new solution A′ is w(A′) = w(x1
′
) + w(x2

′
) + w(x3

′
) + w(x4

′
) +

w(x5
′
) = 30 + 40 + 96 + 72 + 25 = 263 which is equal to the optimal minimum cost

of the solved 2AP.

This heuristic considers a search space of size O(n!) at each step, which corre-
sponds with the search space of a 2AP. It is easy to see that at the end of one step of
this heuristic, the current feasible solution cannot be worse, due to the fact that we
are optimizing the derived search space by solving the corresponding 2AP. Another
way to verify this property is by observing that the new vectors selected, among the
set of derived vectors, always consider the original vectors plus other combinations
such that, if some vectors should be changed to get a better solution, then the 2AP
solution obtains the best ones.

3.4.3 The generalized dimensionwise variation heuristics

The simplification of a sAP to a 2AP can be applied for any sAP with s ≥ 3. Here
we propose a generalization of this heuristic which consists in reducing a sAP to a
tAP with 2 ≤ t < s.

The generalized dimensionwise variation heuristic (GDVH) works as follows: let
t be an integer value such that 2 ≤ t ≤ s − 1 and, based on t, suppose to have
F1, . . . , Ft−1 non empty proper subsets of {1, . . . , s} such that F1 ∩ · · · ∩ Ft−1 = ∅
and F1 ∪ · · · ∪ Ft−1 ⊂ {1, . . . , s}. At one step of the heuristic all the dimensions but
F1∪· · ·∪Ft−1 are fixed and a t-dimensional matrix M t of size n1×· · ·×nt (recall the
simplification ni = n for 1 ≤ i ≤ t) with entries Mi1,...,it = w(vi1,...,it) is generated. Let
vdi1,...,it denote the d-th element of the vector vi1,...,it , all the vectors are built according
to the next function:

vdi1,i2,...,it−1,it =


xdi1 if d ∈ F1

xdi2 if d ∈ F2

. . .
xdit−1 if d ∈ Ft−1
xdit otherwise

for 1 ≤ d ≤ s . (3.11)

The corresponding tAP instance can be solved by using some exact technique, in
this case with the MAP-Gurobi. Algorithm 13 shows the pseudo-code of the gen-
eralized dimensionwise variation heuristic. A complete iteration tries every possible
combination of t subsets of {1, . . . , s}. There are about O(ts) combinations, there-
fore one iteration takes O(ts · (t − 1)n) time where O((t − 1)n) is the complexity of
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solving an instance of size O(nt) with the MAP-Gurobi, except for the cases when
t = 2 because those are the same as for the DVH and can be solved in O(n3). In the
experimental evaluation we also found that, as for DVH, less than ten iterations are
performed before they converge to a local optimum. In any case, the input parameter
iter for the bound of the number of iterations is required.

Algorithm 13: The generalized dimensionwise variation heuristic for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n. t. The
value of the desired problem size reduction such that 2 ≤ t < s. iter.
Maximum number of iterations of the heuristic.

Result: A: The min cost assignment as a matrix of size n× s.
1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set bestCost := assignmentCost(A);
4 Set iterations := 1;
5 while improved = true and iterations ≤ iter do
6 Set improved := false;
7 Set iterations := iterations +1;
8 foreach F1, . . . , Ft−1 ∈ {CombinationSets({1, . . . , s}) do
9 By considering the Equation 3.13, obtain the matrix M t for the

corresponding tAP;
10 Set A′ := MAP-Gurobi(M t) ;
11 if assignmentCost(A′) < bestCost then
12 Set improved := true;
13 Set bestCost := assignmentCost(A′);
14 Map the solution A′ to the corresponding feasible solution onto A;

15 return {A};

This reduction is not so difficult to see. In order to exemplify a reduction of this
type consider the same randomly generated feasible solution A for the toy instance
and pick t = 3 and the sets F1 = {2, 4}, F2 = {3} such that F1 ∪ F2 ⊂ {1, . . . , s},
then M3 is obtained as:

M3
1


(1, 2, 3, 4) (2, 2, 3, 4) (3, 2, 3, 4) (4, 2, 3, 4) (5, 2, 3, 4)
(1, 2, 1, 4) (2, 2, 1, 4) (3, 2, 1, 4) (4, 2, 1, 4) (5, 2, 1, 4)
(1, 2, 4, 4) (2,2,4,4) (3, 2, 4, 4) (4, 2, 4, 4) (5, 2, 4, 4)
(1, 2, 2, 4) (2, 2, 2, 4) (3, 2, 2, 4) (4, 2, 2, 4) (5, 2, 2, 4)
(1, 2, 5, 4) (2, 2, 5, 4) (3, 2, 5, 4) (4, 2, 5, 4) (5, 2, 5, 4)

→
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24 48 72 96 120
8 16 24 32 40

32 64 96 128 160
16 32 48 64 80
40 80 120 160 200



M3
2


(1, 3, 3, 3) (2, 3, 3, 3) (3, 3, 3, 3) (4, 3, 3, 3) (5, 3, 3, 3)
(1, 3, 1, 3) (2, 3, 1, 3) (3, 3, 1, 3) (4, 3, 1, 3) (5, 3, 1, 3)
(1, 3, 4, 3) (2, 3, 4, 3) (3, 3, 4, 3) (4, 3, 4, 3) (5, 3, 4, 3)
(1, 3, 2, 3) (2, 3, 2, 3) (3,3,2,3) (4, 3, 2, 3) (5, 3, 2, 3)
(1, 3, 5, 3) (2, 3, 5, 3) (3, 3, 5, 3) (4, 3, 5, 3) (5, 3, 5, 3)

→


27 54 81 108 135
9 18 27 36 45
36 72 108 144 180
18 36 54 72 90
45 90 135 180 225



M3
3


(1, 5, 3, 2) (2, 5, 3, 2) (3, 5, 3, 2) (4, 5, 3, 2) (5, 5, 3, 2)
(1, 5, 1, 2) (2, 5, 1, 2) (3, 5, 1, 2) (4,5,1,2) (5, 5, 1, 2)
(1, 5, 4, 2) (2, 5, 4, 2) (3, 5, 4, 2) (4, 5, 4, 2) (5, 5, 4, 2)
(1, 5, 2, 2) (2, 5, 2, 2) (3, 5, 2, 2) (4, 5, 2, 2) (5, 5, 2, 2)
(1, 5, 5, 2) (2, 5, 5, 2) (3, 5, 5, 2) (4, 5, 5, 2) (5, 5, 5, 2)

→


30 60 90 120 150
10 20 30 40 50
40 80 120 160 200
20 40 60 80 100
50 100 150 200 250



M3
4


(1, 1, 3, 1) (2, 1, 3, 1) (3, 1, 3, 1) (4, 1, 3, 1) (5, 1, 3, 1)
(1, 1, 1, 1) (2, 1, 1, 1) (3, 1, 1, 1) (4, 1, 1, 1) (5, 1, 1, 1)
(1, 1, 4, 1) (2, 1, 4, 1) (3, 1, 4, 1) (4, 1, 4, 1) (5, 1, 4, 1)
(1, 1, 2, 1) (2, 1, 2, 1) (3, 1, 2, 1) (4, 1, 2, 1) (5, 1, 2, 1)
(1, 1, 5, 1) (2, 1, 5, 1) (3, 1, 5, 1) (4, 1, 5, 1) (5,1,5,1)

→


3 6 9 12 15
1 2 3 4 5
4 8 12 16 20
2 4 6 8 10
5 10 15 20 25
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M3
5


(1,4,3,5) (2, 4, 3, 5) (3, 4, 3, 5) (4, 4, 3, 5) (5, 4, 3, 5)
(1, 4, 1, 5) (2, 4, 1, 5) (3, 4, 1, 5) (4, 4, 1, 5) (5, 4, 1, 5)
(1, 4, 4, 5) (2, 4, 4, 5) (3, 4, 4, 5) (4, 4, 4, 5) (5, 4, 4, 5)
(1, 4, 2, 5) (2, 4, 2, 5) (3, 4, 2, 5) (4, 4, 2, 5) (5, 4, 2, 5)
(1, 4, 5, 5) (2, 4, 5, 5) (3, 4, 5, 5) (4, 4, 5, 5) (5, 4, 5, 5)

→


60 120 180 240 300
20 40 60 80 100
80 160 240 320 400
40 80 120 160 200

100 200 300 400 500


In this example, we can observe that the vertices of the dimensions in the set

{1, . . . , s}\{F1 ∪ F2} are fixed in the corresponding vectors of M ; the vertices of the
dimensions in the set F1 just vary between each matrix Mi and Mj for all i 6= j and
1 ≤ i, j ≤ 5; the vertices of the dimensions in the set F2 vary at each matrix Mi for
all 1 ≤ i ≤ 5. The optimal solution of this 3AP provides us the vectors of the new
feasible solution A′ which are:

A′ =


x1
′

: (1, 4, 3, 5)

x2
′

: (2, 2, 4, 4)

x3
′

: (3, 3, 2, 3)

x4
′

: (4, 5, 1, 2)

x5
′

: (5, 1, 5, 1)

The cost of the new solution A′ is w(A′) = w(x1
′
) + w(x2

′
) + w(x3

′
) + w(x4

′
) +

w(x5
′
) = 60 + 64 + 54 + 40 + 25 = 243 which is equal to the optimal minimum cost

of the 3AP solved.

This heuristic considers a search space of size O(n!t−1) at each step and, as for
DVH, at the end of one step of this heuristic the current feasible solution cannot be
worse. Since the search space is bigger than in the case of DVH this heuristics tend
to provided better solutions at each simple reduction.

Keep in mind that if the reduction to some tAP with 3 ≤ t ≤ s − 1 still has a
big search space then the resolution of the reduction could take a while or could not
be solved due to the computer power. However, the same may occur in reductions to
some 2AP with n equal to many thousands of vertices.

We called SDVt a dimensionwise variation heuristic that reduces a sAP to a tAP
and considers |Fi| = 1 for all 1 ≤ i < t. We called DVt a dimensionwise variation
heuristic that reduces a sAP to a tAP and considers |Fi| ≥ 1 for all 1 ≤ i < t.
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3.4.4 The k-opt heuristic

The k-opt heuristic for 3AP was proposed originally by [Balas and Saltzman, 1991]
and was extended for sAP by [Karapetyan and Gutin, 2011a].

A k-opt heuristic works as follows: for every possible subset R of k vectors with
R ∈ A, solve the corresponding sAP subproblem with k vertices on each dimension.
The corresponding sAP subproblem with k < n vertices is solved with some exact
technique, which may result in the replacement of the selected vectors for better ones.
In particular, the most common option is to implement the 2-opt and 3-opt heuristics
by using the Brute Force algorithm because it is the fastest option for instances with
2 or 3 vertices and many dimensions.

Algorithm 14 shows the pseudo-code of the k-opt heuristic. A complete iteration
considers each of the

(
n
k

)
possible combinations of vectors. This heuristic repeats

iterations until no improvement is performed. By applying the Brute Force algorithm
an iteration has a time complexity of O(

(
n
k

)
k!s−1). By applying Gurobi-MAP an

iteration has a time complexity of O(
(
n
k

)
(s − 1)k). As in the case for DVH a bound

of ten iterations is fixed.

Algorithm 14: The k-opt heuristic for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
k. The value of the desired k-Opt heuristic to use.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;

7 foreach combination P of vectors in
(
n
k

)
∈ A do

8 P ′ = BruteForce(P );// MAP-Gurobi(P) is suggested for k ≥ 4
9 if assignmentCost(P ′) < assignmentCost(P ) then

10 Set improved := true;
11 Replace the set of vectors in P with P ′ in A;

12 return {A};

In order to illustrate this heuristic consider the previous generated feasible solution
A for the toy instance and pick k = 2 vectors, in particular the vectors x4 and x5.
The optimal solution for this two vectors can be found from the next pairs:

UAM Azcapotzalco Sergio Pérez PhD in Optimization
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[
(4, 1, 2, 1) (4, 1, 2, 5) (4, 1, 5, 1) (4, 1, 5, 5) (4, 4, 2, 1) (4, 4, 2, 5) (4,4,5,1) (4, 4, 5, 5)
(5, 4, 5, 5) (5, 4, 5, 1) (5, 4, 2, 5) (5, 4, 2, 1) (5, 1, 5, 5) (5, 1, 5, 1) (5,1,2,5) (5, 1, 2, 1)

]
.

The corresponding weights are

[
8 40 20 100 32 160 80 400

500 100 200 40 125 25 50 10

]
.

The vectors marked with bold are the new vectors that will be considered as part
of the new feasible solution after applying one step of this heuristic. The new feasible
solution will be:

A =


x1 : (1, 2, 3, 4)
x2 : (2, 3, 1, 3)
x3 : (3, 5, 4, 2)
x4 : (4,4,5,1)
x5 : (5,1,2,5)

This heuristic considers a search space of size O(k!s−1) at each step. As in the
previously described heuristics, at the end of each iteration of this heuristic the current
feasible solution cannot be worse.

3.4.5 Combined heuristics

The idea of this type of heuristics consists in running several types of heuristics one
after the other. The main advantage of a combined heuristic is that it allows to explore
in different types of neighborhoods which may result in a significant improvement.

A correct way to combine several heuristics is to run each heuristic until no im-
provement is obtained and then continue with the next one. The most common is to
combine a DVH with a k-opt heuristic because they include all the basic heuristics
plus several other neighborhoods.

We evaluated three heuristics of this type:

1. Basics combined. Is a combination of all the basic heuristics. The execution
order is simple 2-opt, inversion, circular rotation and, k−vertex permutation.

2. DV2+3-opt. Is a combination of a DV2 and then a 3-opt heuristic. This
heuristic was proposed by [Karapetyan and Gutin, 2011a].

3. DV3+3-opt. Is a combination of a DV3 and then a 3-opt heuristic. We combine
our DV3 with the 3-opt proposed by [Karapetyan and Gutin, 2011a].
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3.4.6 A generalized local search heuristic

We introduce a new heuristic called Generalized Local Search Heuristic (GLSH),
which extends and combines the ideas from the GDVH and the k-opt heuristic.

A GLSH works as follows: let r be an integer value such that 2 ≤ r ≤ s and,
suppose we have F1, . . . , Fr−1 non empty proper subsets such that F1∩ · · · ∩Fr−1 = ∅
and F1 ∪ · · · ∪ Fr−1 ⊂ {1, . . . , s}. Notice the difference of 1 between the considered
range for r and the integer value t used in GDVH. Let k be an integer value with
2 ≤ k ≤ n. The integer values r and k should be chosen such that a reduction of the
original problem (this in terms of the searching space) is achieved, which means that
the next restrictions should be hold:

2 ≤ r ≤ s
2 ≤ k ≤ n

r + k < s+ n
. (3.12)

At one step of this heuristic all the dimensions but F1 ∪ · · · ∪ Fr−1 are fixed and
a set Q of k vectors from the feasible solution A are chosen, then a r-dimensional
matrix M r of size k1 × · · · × kr (recall the simplification ki = k for 1 ≤ i ≤ r) with
entries Mi1,...,ir = w(vi

1,...,ir) is generated. Let vdi1,...,ir denote the d-th element of the
vector vi1,...,ir , all the vectors are built according to the next function:

vdi1,i2,...,ir−1,ir =


xdi1 if d ∈ F1

xdi2 if d ∈ F2

. . .
xdir−1 if d ∈ Fr−1
xdir otherwise

for 1 ≤ d ≤ s . (3.13)

The corresponding rAP instance with k vertices at each dimension can be solved
by using some exact technique, again, we suggest the MAP-Gurobi implementation.
The search space of this heuristic is O(kr−1!). One of the main differences with the
GDVH is that GLSH only considers the vectors in Q instead of the complete list of
vectors of A at each time.

This heuristic extends and generalizes GDVH and k-opt heuristics because by
selecting the values r, k as 2 ≤ r < s and k = n we have the case of a GDVH and by
selecting the values r, k as r = s and 2 ≤ k < n we have a k-opt heuristic. Finally,
by selecting the values r, k as 2 ≤ r < s and 2 ≤ k < n we have a particular case of
GLSH which is not considered neither in GDVH nor k-opt heuristics.

The GLSH can work as a GDVH or as a k-opt, however the parameters r and k
could be tuned at each step of the heuristic, instead of being fixed.

Even when one of the main advantages of GLSH is its flexibility to move among
different searching spaces due to the possibility of tunning of the parameters r and
k, in the experimental evaluation experience showed in the next section it was deter-
mined that, for the particular case when the GLSH is equal to the GDVH, the quality
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solution is comparable to the one of more complex meta-heuristics as the memetic
algorithm proposed by [Karapetyan and Gutin, 2011b].

3.4.7 Experimental evaluation

Several local search heuristics were compared in our experiments:

1. Basic heuristics. We implemented the simple 2-opt, inversion, circular rotation
and, the 6-vertex permutation heuristic. We decided to implement a version of
the k-vertex permutation heuristics with k = 6 because such value even provide
acceptable running times.

2. Dimensionwise variation heuristics. We implemented the SDV2 and the DV2
proposed by [Karapetyan and Gutin, 2011a]. Also, we implemented the SDV3
and the exhaustive DV3.

3. k−opt heuristics. We implemented the brute force 2-opt and 3-opt heuristics
proposed by [Karapetyan and Gutin, 2011a], and the same techniques but im-
plemented with MAP-Gurobi.

4. Combined heuristics. We implemented the basics combined heuristic, the DV2+3-
opt heuristic and the DV3+3-opt heuristic.

We evaluated all these heuristics under the families Random, Clique, Square Root,
Geometric and Product. The problem size instances are s = 4, n ∈ {20, 30, 40, 50},
s = 5, n ∈ {15, 18, 25, 30} and s = 6, n ∈ {12, 15, 18}. For Random, Clique and
Square Root we used the same instances used in [Karapetyan and Gutin, 2011b],
excluding the instances with s = 3 dimensions since all of them were solved optimally
by our MAP-Gurobi. The problem sizes s = 4, n = 50 and s = 5, n = 30 are not
included in their set and it were generated for our own analysis. For the Geometric
and Product families we generated our own set of instances because such families
were not included theirs.

For each family of instances evaluated under some heuristic we calculate the rela-
tive solution error which was also the metric used by [Karapetyan and Gutin, 2011a]
and [Karapetyan and Gutin, 2011b]. The relative solution error RSE is a metric to
measure the size of an error with respect to the size of the solution. In this case, let
opt be the optimal solution for a particular instance and let A be the feasible solution
then the relative solution error of A is calculated as:

w(A)− w(opt)

w(opt)
× 100 (3.14)

Each heuristic was included as part of a multi-start heuristic which consists on exe-
cuting them a certain number of times z and returning the best solution found after
all the executions. We decided to set z = 30 because in our computational experience
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a higher number of executions did not provide significant higher quality solutions and
it was computationally more expensive.

All the heuristics were also implemented in C++ and its performance was eval-
uated on a platform with an Intel Core i5-3210M 2.5 GHz processor with 4 GB of
RAM under Windows 8.

All the tables of solutions and running times show the averaged results for ten
instances of each problem size for the corresponding family.

3.4.7.1 Computational results for basic heuristics

Basic heuristics, excepting the k−vertex permutation, are very simple procedures
that explore small neighborhoods, however, they provide high quality solutions for
the family of instances Geometric.

Tables 3.6 and 3.7 show the experimental results for all the basic heuristics. At
each of the results cells, we show the averaged results for ten instances of each type.
The first column corresponds to the instance name, the second column is the best
known value averaged for ten instances of the corresponding type and the rest of the
columns show the best value found by each heuristic for the ten instances.

It can be observed that in all the cases the simple 2-opt is the most effective
heuristic among the basic heuristics. However, all the results are pretty far away from
the optimal value, except for the Geometric family under the simple 2-opt, where the
results are near to the optimal solutions. The combination of all of the basic heuristics
result in a slightly most effective heuristic but at a very high computational cost. We
can conclude that there is not a big advantage about the combination of all the basic
heuristics.

Table 3.8 shows a summary of the relative solution error for the five families of
instances under the basic heuristics. The basic combined heuristic provides the lowest
relative solution error for this techniques followed by the simple 2-opt.

Tables 3.9 and 3.10 show the execution time for all the basic heuristics. The k-
vertex permutation heuristic and, in consequence, the basics combined heuristic are
computationally the most expensive heuristics.

3.4.7.2 Computational results for k-opt heuristics

The k-opt heuristics explore higher neighborhoods than the basic heuristics and they
offer better solutions than these heuristics.

Tables 3.11 and 3.12 show the experimental results for the k-opt heuristics. It can
be observed that the results for the k-opt heuristics are similar without matter the
implementation, either through brute force as in [Karapetyan and Gutin, 2011a] or
through our MAP-Gurobi, however it is more expensive. The advantage of the brute
force version is that we can solve the corresponding k-opt problem on s dimensions
in place whereas for the MAP-Gurobi version we need to create the corresponding s-
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Table 3.6: Random, Clique and SquareRoot under basic heuristics.

Instance Best Simple Inversion Circular 6− vertex Basic
name known 2−opt rotation permutation combined

4r20 20.0 66.8 146.5 153.3 94.9 62.8
4r30 30.0 92.4 232.1 236.4 147.7 85.6
4r40 40.0 110.4 317.5 340.0 196.0 106.4
4r50 50.0 132.2 409.8 425.0 254.7 127.7
5r15 15.0 50.8 93.6 102.2 58.9 44.7
5r18 18.0 55.4 114.6 127.5 73.0 52.3
5r25 25.0 72.3 169.1 184.1 101.3 68.7
5r30 30.0 81.4 212.7 224.9 125.8 76.1
6r12 12.0 39.8 66.3 72.9 41.2 34.5
6r15 15.0 47.0 84.2 95.1 53.1 42.7
6r18 18.0 52.8 105.0 116.4 64.7 48.7
Avg 24.8 72.8 177.4 188.9 110.1 68.2

RSE - 193.5 615.3 661.7 344 175

4cq20 1901.8 2235.4 3011.3 3070.2 2688.2 2188.7
4cq30 2281.9 3012.3 4523.0 4561.8 3968.8 2923.2
4cq40 2606.3 3664.5 5929.5 6089 5256.9 3668.5
4cq50 3120.5 4441.9 7518.2 7559.1 6672.1 4439.7
5cq15 3110.7 3438.0 4206.1 4276.7 3825.5 3400.5
5cq18 3458.6 3962.4 5070.0 5136.4 4552.7 3907.9
5cq25 4192.7 5134.1 6978.8 7050.6 6250.3 5062.6
5cq30 4677.9 5948.4 8387.3 8457.2 7515.6 5858.7
6cq12 4505.6 4842.5 5546.9 5627.4 5110.6 4771.3
6cq15 5133.4 5702.1 6831.6 6917.2 6217.9 5595.7
6cq18 5765.5 6575.8 8085.8 8265.8 7412.6 6488.5

Avg 3705 4450.7 6008 6091.9 5406.5 4391.4

RSE - 20.1 62.2 64.4 45.9 18.5
4sr20 929.3 1123 1503.1 1529.7 1344.7 1101.3
4sr30 1118.6 1524.2 2230.3 2265.0 1975.1 1499.1
4sr40 1271.4 1914.7 2999.6 3016.1 2616.2 1878.8
4sr50 1530.1 2320.9 3755.7 3811.7 3318.6 2294.8
5sr15 1203.9 1360.2 1644.9 1668.9 1501.3 1336.7
5sr18 1343.9 1582.6 1989.2 2004.0 1798.2 1558.8
5sr25 1627.5 2071.4 2738.3 2766.7 2470.4 2029.7
5sr30 1852.4 2414.8 3272.8 3291.9 2948.0 2373.8
6sr12 1436.8 1557.0 1761.1 1784.4 1630.7 1531.6
6sr15 1654.6 1862.3 2181.2 2216.8 2006.1 1833.6
6sr18 1856.3 2151.4 2600.3 2627.1 2382.4 2127.3
Avg 1438.6 1807.5 2425.1 2452.9 2181.1 1778.7

RSE - 25.6 68.6 70.5 51.6 23.6
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Table 3.7: Geometric and Product under basic heuristics.
Instance Best Simple Inversion Circular 6− vertex Basic

name known 2−opt rotation permutation combined

4g20 2380.5 2383.2 3079 3173 2917.2 2382.1
4g30 3015.2 3026.9 4569.6 4685.3 4286.9 3026.0
4g40 3523.8 3553.0 6072.8 6209.9 5728.4 3551.1
4g50 4102.3 4148.9 7631.9 7833.3 7184.5 4145.9
5g15 3423.7 3427.2 4102.5 4207.6 3890.8 3426.8
5g18 3799.3 3807.7 4815 4970.4 4578.9 3806.2
5g25 4594.9 4615.4 6620.4 6827.4 6286.7 4611.6
5g30 5036.8 5078.1 7813 8066.9 7443.1 5072.4
6g12 4483.7 4487.3 5148.2 5262.6 4920 4485.6
6g15 5242.4 5252.8 6352.9 6469.1 6088.9 5248.0
6g18 5767.4 5785.7 7480.3 7587.4 7115.0 5778.1
Avg 4124.5 4142.4 5789.6 5935.7 5494.6 4139.4

RSE - 0.4 40.4 43.9 33.2 0.4

4p20 8397.3 8402.9 8443.2 8464.4 8437.6 8403.2
4p30 13154.1 13159 13237.2 13284.8 13241.1 13159.0
4p40 16810 16817.4 16944.2 17011.0 16959.2 16817.7
4p50 20705.6 20716.1 20891.2 20965.6 20905.2 20716.9
5p15 21422.8 27070.6 27678.6 28194.1 26494.5 27067.9
5p18 23371.5 29763.9 30580.8 30101.6 32239.7 29763.8
5p25 30150.4 43046.5 43517.1 43928.8 43390.9 43051.0
5p30 34818 50234.6 50993.1 51318.1 52256.7 50232.8
6p12 7421 30578.3 32048.7 33045.3 32400.1 30436.8
6p15 8888.9 39227.4 42392 42291.5 42485.3 39115.5
6p18 9610.1 47585.2 52434.2 51415.7 52785.9 47384.8
Avg 17704.5 29691.1 30832.8 30911 31054.2 29649.9

RSE - 67.7 74.2 74.6 75.4 67.5

Table 3.8: Summary of relative solution error for basic heuristics.

Family of Simple Inversion Circular 6− vertex Basic
instances 2−opt rotation permutation combined

Random 193.5 615.3 661.7 344 175
Clique 20.1 62.2 64.4 45.9 18.5

SquareRoot 25.6 68.6 70.5 51.6 23.6
Geometric 0.4 40.4 43.9 33.2 0.4

Product 67.7 74.2 74.6 75.4 67.5
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Table 3.9: Running times for Random, Clique and SquareRoot under basic heuristics.

Instance Simple Inversion Circular k− vertex Basic
name 2−opt rotation permutation combined

4r20 0.0 0.0 0.3 3.9 4.2
4r30 0.2 0.2 1.6 9.5 10.9
4r40 0.4 0.4 4.4 15.5 20.7
4r50 1.4 1.2 11.5 30.3 44.1
5r15 0.0 0.0 0.2 3.1 2.9
5r18 0.1 0.1 0.4 4.7 4.7
5r25 0.7 0.6 1.6 9.5 10.4
5r30 3.7 2.5 4.9 23.5 26.6
6r12 0.2 0.2 0.2 2.7 2.4
6r15 0.8 0.8 1.0 6.0 5.9
6r18 2.5 2.4 2.9 10.8 10.6

Average 0.9 0.8 2.6 10.9 13

4cq20 0.3 0.2 0.7 7.9 8.0
4cq30 0.6 0.3 2.6 17.1 19.4
4cq40 0.9 0.7 7.2 26.8 37.1
4cq50 1.8 1.5 17.3 46.3 70.9
5cq15 0.1 0.0 0.2 4.1 3.9
5cq18 0.1 0.1 0.5 6.2 6.3
5cq25 0.6 0.6 1.9 12.7 13.9
5cq30 2.9 2.2 5.2 28.2 32.2
6cq12 0.2 0.1 0.3 3.9 3.4
6cq15 0.7 0.6 0.8 7.2 6.7
6cq18 1.9 1.8 2.2 11.5 11.3

Average 0.9 0.7 3.5 15.6 19.3

4sr20 0.0 0.0 0.3 4.2 4.4
4sr30 0.1 0.1 1.6 9.4 11.4
4sr40 0.4 0.4 4.9 17 23.4
4sr50 1.9 1.4 17.7 46.4 70.8
5sr15 0.0 0.0 0.2 4 3.8
5sr18 0.1 0.1 0.5 6.1 6.1
5sr25 0.6 0.6 1.8 12.3 13.5
5sr30 3.1 2.2 5.2 28.2 31.7
6sr12 0.2 0.1 0.3 3.8 3.4
6sr15 0.6 0.6 0.8 7.1 6.5
6sr18 1.9 1.8 2.2 11.3 11.1

Average 0.8 0.6 3.2 13.6 16.9
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Table 3.10: Running times for Geometric and Product under basic heuristics.

Instance Simple Inversion Circular k− vertex Basic
name 2−opt rotation permutation combined

4g20 0.1 0.1 0.5 6.2 6.2
4g30 0.2 0.2 1.7 11.8 12.5
4g40 0.4 0.4 4.5 17.9 21.9
4g50 0.9 0.8 10.0 28.7 37.8
5g15 0.0 0.0 0.2 4.3 3.7
5g18 0.1 0.1 0.4 6.2 5.7
5g25 0.6 0.6 1.7 12.8 12.5
5g30 1.5 1.5 3.5 20.1 20.5
6g12 0.2 0.2 0.3 4.0 3.5
6g15 0.7 0.7 0.9 7.4 6.6
6g18 2.5 1.8 2.3 12.5 11.4

Average 0.6 0.5 2.3 11.9 12.9

4p20 0.1 0.1 0.4 5.2 4.4
4p30 0.2 0.2 1.7 12.4 10.6
4p40 0.5 0.5 5.1 20.6 18.6
4p50 2.4 1.1 10 40.8 30.1
5p15 0.3 0.2 0.4 6.0 5.0
5p18 0.4 0.3 0.8 9.2 7.4
5p25 1.3 1.2 2.6 19.3 15.2
5p30 2.7 2.6 5.5 28.8 23.7
6p12 0.4 0.3 0.4 5.2 4.2
6p15 1.3 1.0 1.3 9.3 7.5
6p18 4.6 3.0 3.4 14.9 12.7

Average 1.3 1.0 2.9 15.6 12.7
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dimensional matrix and to build model for the MAP-Gurobi, which is a very expensive
process. In summary, it is not convenient to use MAP-Gurobi for solving a lot of small
instances of MAP.

It can be observed that k-opt heuristics provide better solutions than basic heuris-
tics however are still far away from optimal solutions, but in the case of the Geometric
family of instances, in which the results are very near to the optimal solutions. It
can be observed that there is a significant difference between the 2-opt and the 3-opt
heuristics in all the cases. We believe that the 4-opt heuristic can even be higher than
the 3-opt heuristic, however its evaluation is computationally very expensive so that
we need a higher computer power. It can be interesting to determine the value of k
for which the k-opt Gurobi version is better than the brute force algorithm. We let
such analysis as future work.

Table 3.13 shows a summary of the relative solution error for the five families of
instances under the k-opt heuristics. The 3-opt heuristic provides the lowest relative
solution error among this type of techniques and, in particular, the Gurobi version is
slightly better than the brute force version.

Tables 3.14 and 3.15 show the corresponding running times for the k-opt heuristics.
It can be observed that the computational cost of the MAP-Gurobi versions for the
2-opt and 3-opt heuristics is computationally high.

3.4.7.3 Computational results for dimensionwise variation heuristics

This family of techniques is one of the most competitive heuristics for MAP.

Tables 3.16 and 3.17 show the experimental results for some versions of the DVH.
We can observe that by combining DV2 + 3-opt the quality of the obtained results is
increased considerably, such that the relative solution error is lower than 10% for all
the families of instances. By the other side, both of our proposed versions of DVH,
the SDV3 and DV3, are superior to the combination of DV2 + 3-opt, obtaining the
optimal solutions for all the instances of the Random and the Geometric families of
instances. In our case, the combination of DV3 + 3-opt does not provide a significant
advantage against the DV3 by itself. Even when we averaged the relative solution
error for all the families of instances, we can calculate this metric for each family of
instances and for each dimension and, in general, the lower values of relative solution
error belongs to the instances with the dimension s = 3, followed by those for s = 5
and finally for s = 6. We believe that the use of reductions of a sAP to a (s− 1)AP
can even provide higher quality solutions, however we let such analysis as future work.

Table 3.18 shows a summary of the relative solution error for the five families
of instances under DVH. The heuristics DV3 and DV3 + 3-opt provide the lowest
relative solution error among this type of techniques. We consider that there is not
a significant difference between the use of DV3 and its combination with the 3-opt.
Probably the combination of DV3 with more powerful k-opt heuristics can provide
higher results like in the case of the combination with DV2 with the 3-opt. We let
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Table 3.11: Random, Clique and SquareRoot under k-opt heuristics.

Instance Best 2-opt 3-opt 2-opt 3-opt
name known (GK) (GK) Gurobi Gurobi

4r20 20.0 52.5 25.7 53.7 24.1
4r30 30.0 72.7 35.3 70.2 33.1
4r40 40.0 87.8 44.0 84.7 41.7
4r50 50.0 105.6 53.3 101.7 50.6
5r15 15.0 31.3 16.5 30.4 15.7
5r18 18.0 36.2 19.0 34.1 18.3
5r25 25.0 47.8 25.4 45.3 25.0
5r30 30.0 54.8 30.1 48.6 30.0
6r12 12.0 21.1 12.0 19.5 12.0
6r15 15.0 24.5 15.0 23.2 15.0
6r18 18.0 28.3 18.0 28.5 18.0
Avg 24.8 51.1 26.8 49.1 25.8

RSE - 106 8.1 98.0 4.0

4cq20 1901.8 2179.8 1983.5 2189.2 1985.9
4cq30 2281.9 2913.0 2549.9 2917.3 2555.3
4cq40 2606.3 3627.7 3055.3 3666.5 3088.5
4cq50 3120.5 4413.9 3670.3 4383.7 3608.4
5cq15 3110.7 3365.5 3185.3 3358.3 3191.1
5cq18 3458.6 3879.3 3597.3 3845.8 3579.6
5cq25 4192.7 5061.8 4562.1 5025.1 4528.2
5cq30 4677.9 5817.3 5237.3 5790.1 5249.8
6cq12 4505.6 4744.0 4577.6 4737.3 4562.6
6cq15 5133.4 5552.8 5309.8 5583.1 5326.7
6cq18 5765.5 6511.4 6041.8 6529.1 6033.9

Avg 3705 4369.7 3979.1 4366 3973.6

RSE - 17.9 7.4 17.8 7.2
4sr20 929.3 1094.2 979.5 1081.1 981.1
4sr30 1118.6 1492.3 1272.5 1492.1 1283.4
4sr40 1271.4 1878.5 1527.9 1861.3 1550.6
4sr50 1530.1 2265.2 1852.0 2260.6 1842.7
5sr15 1203.9 1330.6 1248.6 1322.7 1246.7
5sr18 1343.9 1533.8 1416.6 1537.0 1419.1
5sr25 1627.5 2020.7 1814.0 1991.0 1808.6
5sr30 1852.4 2323.6 2080.0 2338.7 2048.0
6sr12 1436.8 1521.3 1468.3 1530.1 1460.5
6sr15 1654.6 1830.4 1730.9 1828.3 1722.8
6sr18 1856.3 2115.5 1979.0 2105.8 1983.9
Avg 1438.6 1764.2 1579.0 1759.0 1577.0

RSE - 22.6 9.8 22.3 9.6
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Table 3.12: Geometric and Product under k-opt heuristics.

Instance Best 2-opt 3-opt 2-opt 3-opt
name known (GK) (GK) Gurobi Gurobi

4g20 2380.5 2381.7 2380.5 2384.0 2380.5
4g30 3015.2 3022.6 3017.3 3021.9 3015.9
4g40 3523.8 3551.9 3529.6 3546.1 3525.5
4g50 4102.3 4131.5 4112.9 4143.3 4110.5
5g15 3423.7 3424.8 3423.7 3424.7 3423.7
5g18 3799.3 3806.2 3799.3 3803.6 3799.3
5g25 4594.9 4608.5 4596.5 4607.1 4595.8
5g30 5036.8 5068.7 5040.2 5059.5 5041.3
6g12 4483.7 4488.7 4483.7 4487.1 4483.7
6g15 5242.4 5247.7 5243.1 5248.0 5242.5
6g18 5767.4 5780.8 5767.4 5780.9 5767.4
Avg 4124.5 4137.6 4126.7 4136.9 4126.0

RSE - 0.3 0.1 0.3 0.0

4p20 8397.3 8399.1 8397.4 8398.4 8397.6
4p30 13154.1 13155.7 13154.2 13155.3 13154.1
4p40 16810.0 16812.3 16810.2 16812.3 16810.1
4p50 20705.6 20710.4 20706.3 20709.8 20705.7
5p15 21422.8 24213.4 21423.4 22861.5 21551.4
5p18 23371.5 26435.7 24012.4 24993.9 23440.6
5p25 30150.4 37232.6 30475.0 35341.0 30508.1
5p30 34818.0 43474.0 35811.6 41606.7 35727.9
6p12 7421.0 11882.0 8172.2 11366.7 7793.9
6p15 8888.9 15302.1 10356.6 14185.8 9514.6
6p18 9610.1 17181.3 11379.1 16506.6 10411.9
Avg 17704.5 21345.3 18245.3 20539.8 18001.4

RSE - 20.6 3.1 16.0 1.7

Table 3.13: Summary of relative solution error for basic heuristics.

Family of 2-opt 3-opt 2-opt 3-opt
instances (GK) (GK) Gurobi Gurobi

Random 106 8.1 98 4.0
Clique 17.9 7.4 17.8 7.2

SquareRoot 22.6 9.8 22.3 9.6
Geometric 0.3 0.1 0.3 0.0

Product 20.6 3.1 16 1.7
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Table 3.14: Times for Random, Clique and SquareRoot under k-opt heuristics.

Instance 2-opt 3-opt 2-opt 3-opt
name (GK) (GK) Gurobi Gurobi

4r20 0.4 2.2 21.3 614.8
4r30 0.7 7.9 53.1 2532.5
4r40 1.3 19.3 91.8 6261.3
4r50 1.5 35.1 114.1 10998.2
5r15 0.4 3.2 16.2 1135.5
5r18 0.4 6.9 27.2 2491.8
5r25 1.2 16.7 49.6 6533.4
5r30 2.9 36.3 98.6 18209.3
6r12 0.6 10.9 25.2 613.7
6r15 1.5 23.5 44.6 1201.3
6r18 3.9 42.9 69.5 2666.6

Average 1.4 18.7 55.6 4841.7

4cq20 0.3 2.3 26.3 287.6
4cq30 0.6 10.0 70.0 1130.1
4cq40 1.1 28.7 127.1 3486.4
4cq50 1.8 52.3 174.6 9938.3
5cq15 0.2 3.7 19.1 1126.3
5cq18 0.4 7.2 31.5 2493.5
5cq25 1.1 23.8 66.4 7007.8
5cq30 3.0 52.2 129.8 15830.2
6cq12 0.6 10.8 24.7 429.9
6cq15 1.1 25.8 43.0 973.3
6cq18 3.1 48.5 64.6 2161.5

Average 1.2 24.1 70.6 4078.6

4sr20 0.3 2.1 21.7 486.5
4sr30 0.5 8.4 55.6 2095.8
4sr40 0.9 24.5 112.7 5668.5
4sr50 1.7 52.7 187.7 11579.6
5sr15 0.3 4.8 27.8 1354.7
5sr18 0.4 8.4 39.1 3253.0
5sr25 1.4 28.0 88.6 8205.7
5sr30 2.9 53.2 126.1 17488.1
6sr12 0.5 12.9 30.1 622.3
6sr15 1.4 29.6 55.6 1244.0
6sr18 3.7 59.5 87.7 2505.2

Average 1.3 25.8 75.7 4954.9
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Table 3.15: Times for Geometric and Product under k-opt heuristics.

Instance 2-opt 3-opt 2-opt 3-opt
name (GK) (GK) Gurobi Gurobi

4g20 0.2 1.2 16.9 370.4
4g30 0.3 4.9 42.1 1402.2
4g40 0.7 13.7 85.0 4002.1
4g50 1.3 29.4 135.5 7860.4
5g15 0.4 2.4 15.0 1090.5
5g18 0.5 5.6 29.2 2318.3
5g25 1.1 16.8 61.9 5891.4
5g30 2.3 31.7 95.2 9285.7
6g12 0.4 8.9 22.3 350.7
6g15 1.3 19.6 38.5 739.2
6g18 3.1 37.6 60.5 1394.6

Average 1.1 15.6 54.7 3155.0

4p20 0.2 0.9 13.3 393.1
4p30 0.3 4.1 42.0 1145.2
4p40 0.7 10.7 79.3 3608.8
4p50 1.3 22.1 129.1 7085.8
5p15 0.3 3.1 26.4 671.4
5p18 0.4 6.1 46.6 1420.0
5p25 1.3 18.1 105.1 4477.8
5p30 4.8 396.7 158.0 6520.8
6p12 0.5 10.8 34.8 650.5
6p15 1.1 24.3 60.4 1404.8
6p18 3.0 45.7 98.2 3068.1

Average 1.3 49.4 72.1 2767.8
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Table 3.16: Random, Clique and SquareRoot under DVH.

Instance Best Simple DVH2 DVH2 + Simple DVH3 DVH3 +
Name known DVH2 3-opt DVH3 3-opt

4r20 20.0 42.2 34.9 26.6 20.0 20.0 20.0
4r30 30.0 50.7 43.1 35.4 30.0 30.0 30.0
4r40 40.0 56.7 51.7 44.2 40.0 40.0 40.0
4r50 50.0 65.5 57.9 52.3 50.0 50.0 50.0
5r15 15.0 33.7 24.2 16.1 15.2 15.0 15.0
5r18 18.0 38.9 26.6 18.8 18.0 18.0 18.0
5r25 25.0 42.6 34.6 25.2 25.0 25.0 25.0
5r30 30.0 46.8 36.2 30.0 30.0 30.0 30.0
6r12 12.0 27.3 16.1 12.0 12.6 12.0 12.0
6r15 15.0 31.9 19.8 15.0 15.1 15.0 15.0
6r18 18.0 33.7 22.8 18.0 18.0 18.0 18.0
Avg 24.8 42.7 33.4 26.7 24.9 24.8 24.8

RSE - 72.2 34.7 7.7 0.4 0.0 0.0

4cq20 1901.8 2009.0 2000.5 1964.4 1910.3 1909.0 1909.0
4cq30 2281.9 2530.0 2515.3 2474.8 2319.1 2322.6 2322.6
4cq40 2606.3 3018.6 2992.8 2956.5 2722.6 2714.2 2714.2
4cq50 3120.5 3504.9 3498.9 3467.9 3153.7 3144.8 3144.8
5cq15 3110.7 3229.4 3223.4 3190.9 3148.0 3128.0 3128.0
5cq18 3458.6 3695.2 3624.2 3564.8 3507.7 3507.9 3507.9
5cq25 4192.7 4597.6 4570.1 4509.4 4340.4 4337.2 4335.2
5cq30 4677.9 5205.7 5195.3 5119.6 4918.4 4886.1 4886.1
6cq12 4505.6 4651.5 4615.5 4550.2 4534.9 4532.6 4532.6
6cq15 5133.4 5375.9 5382.1 5303.6 5237.2 5216.7 5214.9
6cq18 5765.5 6131.0 6123.0 6018.5 5917.6 5895.5 5894.0

Avg 3705 3995.3 3976.5 3920.1 3791.8 3781.3 3780.8

RSE - 7.8 7.3 5.8 2.3 2.1 2.0
4sr20 929.3 998.6 981.8 969.9 935.0 937.4 937.4
4sr30 1118.6 1267.3 1265 1244.5 1153.5 1153.2 1153.2
4sr40 1271.4 1496.0 1487.6 1478.4 1331.5 1337.0 1337.0
4sr50 1530.1 1765.4 1774.2 1743.3 1543.6 1551.6 1551.6
5sr15 1203.9 1276.6 1263.0 1243.3 1220.0 1215.4 1215.4
5sr18 1343.9 1460.2 1437.8 1416.5 1377.2 1369.3 1364.0
5sr25 1627.5 1826.0 1824.7 1779.2 1704.7 1703.9 1703.9
5sr30 1852.4 2082.1 2079.0 2058.8 1939.6 1935.3 1933.5
6sr12 1436.8 1502.4 1489.8 1467.7 1452.7 1447.6 1447.6
6sr15 1654.6 1757.5 1728.7 1706.2 1692.0 1689.1 1685.2
6sr18 1856.3 2008.5 1987.1 1970.6 1919.9 1911.9 1911.6
Avg 1438.6 1585.5 1574.4 1552.6 1479.1 1477.4 1476.4

RSE - 10.2 9.4 7.9 2.8 2.7 2.6
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Table 3.17: Geometric and Product under DVH.
Instance Best Simple DVH2 DVH2 + Simple DVH3 DVH3 +

Name known DVH2 3-opt DVH3 3-opt

4g20 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3015.4 3015.2 3015.2 3015.2 3015.2 3015.2
4g40 3523.8 3524.4 3524.0 3523.8 3523.8 3523.8 3523.8
4g50 4102.3 4103.6 4102.4 4102.3 4102.3 4102.3 4102.3
5g15 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3
5g25 4594.9 4595.7 4595.4 4594.9 4594.9 4594.9 4594.9
5g30 5036.8 5038.7 5037.1 5037.0 5036.8 5036.8 5036.8
6g12 4483.7 4485.6 4483.7 4483.7 4483.7 4483.7 4483.7
6g15 5242.4 5242.4 5242.6 5242.4 5242.4 5242.4 5242.4
6g18 5767.4 5767.4 5767.4 5767.4 5767.5 5767.4 5767.4
Avg 4124.5 4125.2 4124.7 4124.6 4124.6 4124.5 4124.6

RSE - 0.0 0.0 0.0 0.0 0.0 0.0

4p20 8397.3 8401.1 8397.9 8397.4 8397.3 8397.3 8397.3
4p30 13154.1 13156.3 13154.5 13154.2 13154.1 13154.1 13154.1
4p40 16810.0 16814.5 16810.9 16810.1 16810.0 16810.0 16810.0
4p50 20705.6 20713.4 20708.1 20706.1 20705.6 20705.6 20705.6
5p15 21422.8 27688.9 22293.3 21423.0 21671.8 21422.8 21422.8
5p18 23371.5 29756.5 25520.0 23508.4 24635.0 23371.8 23371.7
5p25 30150.4 43044.7 34971.2 30448.2 34333.0 30258.4 30258.0
5p30 34818.0 50230.6 41908.2 36243.8 40137.2 35231.3 35231.2
6p12 7421.0 29396.4 10314.4 8300.7 9282.6 7664.0 7664.0
6p15 8888.9 37193.8 12245.8 9889.0 10768.7 8888.9 8888.9
6p18 9610.1 46417.1 13125.6 10842.4 12085.9 9610.1 9610.1
Avg 17704.5 29346.7 19950 18156.7 19271.0 17774.0 17774.0

RSE - 65.8 12.7 2.6 8.8 0.4 0.4
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Table 3.18: Summary of relative solution error for DVH.

Family of Simple DVH2 DVH2 + Simple DVH3 DVH3 +
instances DVH2 3-opt DVH3 3-opt

Random 72.2 34.7 7.7 0.4 0.0 0.0
Clique 7.8 7.3 5.8 2.3 2.1 2.0

SquareRoot 10.2 9.4 7.9 2.8 2.7 2.6
Geometric 0.0 0.0 0.0 0.0 0.0 0.0

Product 65.8 12.7 2.6 8.8 0.4 0.4

such analysis as future work.

Tables 3.19 and 3.20 show the corresponding running times for the DVH and the
combined heuristics. It can be observed that the computational cost of reductions
of a sAP to a 3AP are more expensive than reductions to a 2AP, however we highly
believe that the cost at the obtaining benefit is a good deal since for some families of
instances our DV3 is able to find the optimal solutions and, for the rest of families, the
relative solution error is approximately of 2% or lower which is competitive against
more complex meta-heuristics such as the state of the art memetic algorithm proposed
by [Karapetyan and Gutin, 2011a].

In summary, it can be observed that the DVH techniques hold the title as the
better heuristics for the MAP and, our developed versions, the SDV3 and DV3,
provide competitive results against more complex metaheuristics which use as part of
its machinery the simplest versions of the DVH family of heuristics, that is the SDV2
and DV2.

3.5 A new simple memetic algorithm for the MAP

The concept of memetic algorithm comes from the idea of combining a genetic al-
gorithm with a local search. A genetic algorithm is a metaheuristic inspired by the
process of natural selection.

Genetic algorithms approach optimization problems by considering some bio-
inspired operators such as mutation, crossover and selection. A genetic algorithm
requires a genetic representation of a feasible solution as well as a fitness function to
evaluate the quality of the solution. The advantage of this type of technique is that
it works on a set of multiple feasible solutions and improve them by taking the best
individuals among an evolutionary process. The diversification of individuals avoids
to direct the set of feasible solutions to a local optimum since it allows to explore over
several neighborhoods at the same time.

Algorithm 15 shows the general structure of a genetic algorithm. Let generations
be the number of evolutionary steps, let populationSize be the required size for
the population among the evolutionary process and, let mutationProbability the
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Table 3.19: Running times for Random, Clique and SquareRoot under DVH.

Instance Simple DVH2 DV2 + Simple DVH3 DVH3+
name DVH2 (GK) (GK) 3−opt DVH3 3−opt

4r20 0.2 0.3 2.5 177.8 178.1 179.4
4r30 0.3 0.5 8.6 875.4 1297.0 866.0
4r40 0.9 0.8 21.4 2474.2 2895.3 2112.8
4r50 1.3 1.4 43.7 3035.8 3541.7 4011.4
5r15 0.3 0.2 4.3 65.2 120.9 125.1
5r18 0.5 0.4 10.3 200.1 383 388.8
5r25 1.1 1.2 29.8 678.9 2013.5 1739.1
5r30 2.7 2.7 54.4 1514.6 4984.7 4813.6
6r12 0.4 0.3 9.6 38.9 159.9 183.1
6r15 1.0 0.9 21.5 77.0 269.6 303.7
6r18 2.5 103.1 36.7 183.9 676.6 645.4

Average 1 10.2 22.1 847.4 1501.8 1397.1

4cq20 0.5 0.2 2.0 120 122.2 124.1
4cq30 0.4 0.4 6.1 431.3 426.7 432.0
4cq40 0.7 0.8 17.5 2128.8 1550.9 1540.8
4cq50 1.3 1.6 38.4 2478.1 2505.5 2520.7
5cq15 0.3 0.3 4.2 52.5 128.4 132.3
5cq18 0.4 0.4 7.1 129.9 296.7 300.6
5cq25 1.6 1.7 21.8 527.5 832.8 861.8
5cq30 2.4 2.1 36.9 602.8 1334.2 1364.8
6cq12 0.4 0.5 11.6 41.7 231.2 240.1
6cq15 1.1 1.2 26.6 80.1 442.9 457.2
6cq18 3.1 3.0 54.5 295.3 1099.0 1193.4

Average 1.1 1.1 20.6 626.2 815.5 833.4

4sr20 0.3 0.2 1.6 110.1 108.3 162.5
4sr30 0.4 0.4 6.1 505.4 521.3 528.0
4sr40 0.7 0.8 15.8 1539.4 2033.3 1512.0
4sr50 1.2 1.2 28.6 2405.5 2496.3 2381.3
5sr15 0.2 0.3 4.5 56.8 131.0 130.9
5sr18 0.5 0.3 5.9 100.5 230.9 245.2
5sr25 1.1 0.9 18.6 306.3 884.9 727.4
5sr30 2.5 2.7 44.1 860.0 2011.4 2640.9
6sr12 0.5 0.4 9.1 33.1 194.1 199.2
6sr15 1.1 1.0 19.8 64.8 362.1 375.0
6sr18 3.1 2.8 47.1 195.5 1547.9 1060.3

Average 1.1 1 18.3 561.6 956.5 905.7
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Table 3.20: Running times for Geometric and Product under DVH.

Instance Simple DVH2 DV2 + Simple DVH3 DVH3+
name DVH2 (GK) (GK) 3−opt DVH3 3−opt

4g20 0.1 0.1 0.8 85.3 82.9 54.1
4g30 0.2 0.2 2.6 224.9 208.9 172.8
4g40 0.4 0.5 6.7 660.9 646.0 515.8
4g50 1.2 1.6 18.0 1224.9 1011.7 1028.4
5g15 0.5 0.1 3.2 28.7 73.5 123.9
5g18 1.4 0.2 5.5 68.5 173.1 304.6
5g25 0.9 0.9 19.6 233.7 926.3 797.8
5g30 2.6 2.9 33.1 563.0 1431.9 1312.2
6g12 0.4 0.4 8.4 35.9 215.7 255.7
6g15 1.1 1.1 18.7 65.3 406.5 486.0
6g18 3.2 3.2 40.9 159.9 1001.2 1133.5

Average 1.1 1.0 14.3 304.6 561.6 562.3

4p20 0.1 0.2 1.9 485.6 117.28 153.6
4p30 0.5 0.5 6.1 849.0 827.29 840.0
4p40 0.7 0.9 15.7 2010.8 1770.13 1961.5
4p50 1.4 1.9 30.9 7837.3 8506.31 9160.0
5p15 0.1 0.3 6.6 92.1 191.89 295.5
5p18 0.4 0.6 12.3 286.4 637.2 831.6
5p25 1.2 1.7 28.3 1015.9 2836.16 3108.4
5p30 2.8 3.9 57.8 3655.8 7110.86 7033.6
6p12 0.5 0.7 21.7 75.1 341.4 438.4
6p15 1.3 1.9 44.9 163.6 639.5 842.9
6p18 7.1 3.6 96.7 346.4 1544.7 2703.6

Average 1.5 1.5 29.4 1528.9 2229.3 2488.1
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probability of mutating an individual, a genetic algorithm works as follows: at first,
all the individuals are created according to the required size populationSize. Then
are executed a total of generations iterations. At each iteration, first a selection of
the best individuals is performed. Based on the selected individuals, a set new of
individuals is created. Finally, with a low probability, some mutations are applied to
the individuals. The expected is to have better individuals as soon as the generations
are passed.

Algorithm 15: The general structure of a genetic algorithm.

Input: generations. The number of generations to iterate.
populationSize. The size of the population among the iterations.
mutationProbability. The probability to mutate an individual.
Result: best individual. The best individual among all the generations.

1 Set individuals := Initialization(PopulationSize);
2 Set iterations := 1;
3 while iterations ≤ generations do
4 Set individuals := SelectionOfSurvivors(individuals);
5 Set offspring := Crossover(individuals);
6 foreach individual in offspring do
7 Set individual := MutateIndividual(individual, mutationProbability);

8 Set individuals := offspring;
9 Set iterations := iterations +1;

10 return {GetBestOfIndividuals(individuals)};

In a memetic algorithm the main idea is to mutate the individuals by improving
them instead of by performing random changes over them. Such improving can be
performed by a local search heuristic. The disadvantage is that the technique can
direct the individuals to some local optimum because the diversification provided by
random mutations is lost. In some cases, can even be applied some random changes
over a low proportion of the individuals in order to avoid lose the diversification.

The first memetic algorithm for the MAP was proposed by [Huang and Lim, 2006].
It was called LSGA (Local Searching Genetic Algorithm) and consist on a basic
structure of a genetic algorithm with an initial population of 100 individuals random
generated and improved by a SDV2, the partially mapped crossover as crossover
operator, the DV2 instead of a mutation operator, a basic selection similar to the
elitist selection and, a stop criteria consisted on ending either after 10 generations of
no improvement or when in the set of individuals there were many duplicates. The
Figure 3.5 shows the general structure of an iteration of the LSGA.

We introduce a similar memetic algorithm to the one proposed by [Huang and Lim, 2006]
with the difference that we evaluate several crossover operators, selection functions,
local search heuristics and some mutations, in order to obtain a more robust memetic
algorithm that provides higher quality solutions.
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Figure 3.5: Structure of the memetic algorithm proposed by Huang and Lim.

Algorithm 16 shows the proposed simple memetic algorithm (SMA). Our SMA
returns the best individual found among all the iterations. In the initialization, the
population is randomly generated and improved by a local search heuristic, then the
first best individual is obtained. At each iteration, first a crossover method is applied
but, instead of obtaining a offspring equal to the required size of the population,
just a proportion determined by the input parameter survivorPerc is generated.
These individuals will be the first part of the next generation. After the crossing,
each individual from the offspring should be improved by the local search heuristic.
The second part of the new generation of individuals is obtained from the selection
method. Just the proportion of the current population indicated by the input param-
eter survivorPerc is going to survive. At the end of each iteration, some individuals
of the new population are mutated with a probability of mutationProb. Finally, we
update the best individual by considering the individuals from the next generations.

One of the main differences of our memetic algorithm against others is that we
select uniformly at random two individuals to be crossed instead of using a selection
function. In our case, we decided to use the selection function to select a set of
individuals from the current generation to be part of the next generation joined with
the individuals resulted from the crossover function. By performing this process we
allow a higher diversification as well as we increase the fitness of the population. Even
when a good individual can be crossed with an individual of low quality, the local
search heuristic makes to converge it to a local optimum solution.

3.5.1 Genetic representation and fitness function

The genetic representation is the way of representing solutions in an evolutionary
method. The genetic representation must have all the characteristics that allow us
to evaluate the quality of a feasible solution.
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Algorithm 16: A new memetic algorithm for the MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
generations. The number of generations to iterate.
crossoverMethod. The type of crossover method to be used.
LSHMethod. The type of local search heuristic to be used.
mutationMethod. The type of mutation method to be used.
mutationProb. The probability to mutate an individual.
N. The size fo the population among the iterations.
selectionMethod. The type of selection method to be used.
survivorPerc. The % of survivor individuals from the previous generation.
Result: best individual: The best fitted individual.

1 Set individuals := ∅;
2 while |individuals| ≤ N do
3 new individual := FeasibleRandomGeneratedSolutionForMAP(G);
4 new individual := LSH(individual, LSHMethod);
5 individuals := individuals ∪ new individual;

6 Set best individual := GetBestOfIndividuals(individuals);
7 Set iterations := 1;
8 while iterations ≤ generations do
9 Set offspring := Crossover(individuals, crossoverMethod, 1.0 -

survivorPerc);
10 foreach off in offspring do
11 Set off := LSH(off, LSHMethod);

12 Set new individuals := Selection(individuals, selectionMethod,
survivorPerc);

13 Set individuals := new individuals ∪ offspring;
14 foreach individual in individuals do
15 Set individual := Mutate(individual, mutationMethod, mutationProb);
16 Set individual := LSH(individual, LSHMethod);

17 Set best individual := GetBestOfIndividuals(individuals ∪ best individual);
18 Set iterations := iterations+1;

19 return {best individual};

The most common representation of a solution is as a binary array. In the case of
our problem we decided to adopt the genetic representation as a set of s permutations,
where each of the s dimensions of a feasible solution corresponds with a permutation of
the vertices on that dimension. This representation is the same used for the feasible
solutions for our developed local search heuristics and will allow us to incorporate
them as part of our memetic algorithm. The disadvantage of this representation is
that the crossing of individuals, in most of the cases, produce unfeasible solutions
which should be repaired.
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The fitness function is the way to evaluate how close to the optimum is a feasible
solution. Our fitness function consists in summing the weights of the hyperedges of
each feasible solution. A solution A is better than a solution B if the sum of the
weights of A is lower than the sum of the weights of B. The process of evaluating
each solution takes O(sn) time.

3.5.2 The selection function

In our case, the selection function allow us to obtain the next generation of individuals
from a current population. There are several methods to perform the selection for the
next generation of individuals. We implemented three different selection functions:
elitist, tournament and roulette wheel selection.

3.5.2.1 Elitist selection

This strategy consists in choosing a limited number of the best candidates of a popu-
lation to survive for the next generation. This technique tends to avoid the crossover
and mutation operators. The number of elite individuals should not be high, other-
wise the population will tend to degenerate and we lose diversification.

Algorithm 17 shows this procedure. It is quite simple, the first step consists in
ordering the individuals according to its fitness function. Then the best survivorPerc
percent of the individuals is selected to be returned. Since only a sorting is required,
this process takes O(N logN) time where N is the number of individuals in the
population.

Algorithm 17: The elitist selection function.

Input: Individuals. A set of assignments.
survivorPerc. The percentage of survivor individuals from the current set.
Result: survivors: The set of survivor individuals.

1 orderedIndividuals := Sort individuals descending by its fitness value;
2 survivors := Select the best survivorPerc individuals from orderedIndividuals;
3 return {survivors};

The main advantage of this strategy is that it tries to avoid previously discarded
solutions that were not so good. The main disadvantage is that it may cause a fast
convergence to local optimums.

3.5.2.2 Tournament selection

This is a rank-based strategy. It consists on randomly choosing a set of individuals
and performing a set of tournaments between them. The winner of each tournament
is selected to be part of the next generation. If the size of a tournament is short
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then weak individuals have a bigger chance to be selected whereas if the size of a
tournament is large then weak individuals have a lower chance.

Algorithm 18 shows this procedure. In the first step, a random permutation
of the elements from {1, . . . , |individuals|} is performed. Such permutation will be
used to match in a tournament the 1st and the 2nd individuals, the 3rd and the
4th individuals and so on until we have the required population size. The winner
from each tournament is added to the survivors set. A random permutation of the
individuals can be performed in O(N) time and the tournaments are comparisons
between a pair of fitness functions, therefore this procedure takes O(N) time.

Algorithm 18: The tournament selection function.

Input: Individuals. A set of assignments.
survivorPerc. The percentage of survivor individuals from the current set.
Result: survivors: The set of survivor individuals.

1 Set N := |individuals|;
2 permutation := Make a random permutation of the elements from 1, . . . , N ;
3 survivors := ∅;
4 index := 1;
5 permutation := permutation || permutation while
|survivors| < survivorPerc ∗ |individuals| do

6 winner := MakeTorunament(individuals[ permutation[index] ], individuals[
permutation[index + 1]]);

7 survivors := survivors ∪ winner;
8 index := index+ 2;

9 return {survivors};

The main advantage of this strategy is that it promotes the diversification of
individuals. The main disadvantage is that the best individuals from the previous
generation can be discarded.

3.5.2.3 Roulette wheel selection

This is strategy that selects individuals according to some probability of selection
determined by the fitness of each individual. This strategy is also known as fitness
proportionate selection. The idea is that individuals with a better fitness have a
higher chance to be selected whereas lower fitness individuals have a lower probability
of being selected. Let fi the fitness of the individual i of the current population then
its probability of being selected is:

pi =
fi∑|individuals|

i=1 fi
(3.15)

Algorithm 19 shows this procedure. In the first step, the individuals are sorted
descending order by its fitness value. The total fitness sum fitSum is calculated and
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an array dp stores the cumulative fitness sum until each individual. At each iteration,
a uniformly random value α is generated from the interval [0, fitSum). Then we
perform a binary search over the array dp to find the first index j at which α ≤ dp[j].
Then, the j-th individual is added to the next generation.

Algorithm 19: The roulette wheel selection function.

Input: Individuals. A set of assignments.
survivorPerc. The percentage of survivor individuals from the current set.
Result: survivors: The set of survivor individuals.

1 Set N := |individuals|;
2 orderedIndividuals := Sort individuals descending by its fitness value;
3 Set fitnessSum := 0;
4 Set dp := An array of N elements;
5 foreach index in 1 : N do
6 fitnessSum := fitnessSum + fitness(orderedIndividuals[i]);
7 Set dp[index] := fitnessSum;

8 Set survivors := ∅;
9 while |survivors| < survivorPerc ∗ |orderedIndividuals| do

10 Set alpha := random() % fitnessSum;
11 Set index := binarySearch(dp, dp + N, alpha);

// returns the lowest index with alpha ≤ dp[index]

12 Set survivors := survivors ∪ orderedIndividuals[index];

13 return {survivors};

The main advantage of this function is that all individuals have a probability of
being selected according to its fitness value so the expected behavior is to have a bigger
proportion of the most apt individuals but, it is allowed to have some weak individuals,
promoting a higher diversification. The main disadvantage is that the same individual
can be selected to appear more than once for the next generation, especially the best
fitted individuals. The binary search in the main cycle takes O(logN) time and there
are required survivorPerc ·N iterations so the time complexity is O(survivorPerc ·
N · logN).

3.5.3 The crossover operator

The crossover is a genetic operator used to generate new individuals (chromosomes)
from one generation to the next. This is an analogous process to the biological
reproduction. A crossover takes some characteristics from two or more parents and
combine them to create a new individual.

Usually the selection function is used to select the individuals to cross, however
we decided to uniformly at random choose two elements from the current generation
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to cross them, even if they have a very different fitness value. The main reason
to apply this criteria is that a new individual is alway improved through a local
search, therefore if the new individual from the crossing is not so good, then it will
be improved, resulting in an individual that, in fact, can be better than its parents.
In addition, in our experimental evaluation we observe that this allow us to have a
higher diversification among the generations.

We implemented three basic crossover techniques: partially mapped crossover,
cycled crossover and order crossover. All this crossover techniques were implemented
to work over permutations, recall, the vertices on each dimension are represented as
a permutation.

3.5.3.1 Partially mapped crossover

The partially mapped crossover (PMX) was introduced by [Goldberg and Lingle, 1985]
and was proposed for the TSP. The PMX consists on passing an ordered subsegment
tour from the parents to the offspring. A string portion from one parent is mapped
onto a string portion from the other parent and the remaining information is ex-
changed. If the resulting offspring is invalid it should be repaired.

Algorithm 20 shows the PMX procedure. Initially we select two points for a
crossing segment and each individual of the offspring is copied from its corresponding
parents. Then, the segment indicated by the crossing points is swapped between the
two elements of the offspring. If required, the repairing process consists on changing
the duplicated values (out of the exchanged segment) of each permutation by its cor-
responding mapped value from the other permutation. If the corresponding mapped
value is already present in the current permutation then the mapped value should be
evaluated with its corresponding mapped value from the other permutation and so
on in a cyclic way until a non present value in the current permutation is reached.

Suppose we have the permutations ind1 = (2, 3, 5, 1, 4) and ind2 = (3, 5, 1, 4, 2)
and the crossing points p1 = 1 and p2 = 3. Then the corresponding offspring are
initialized as o1 = (2, 3, 5, 1, 4) and o2 = (3, 5, 1, 4, 2). The crossing step is as follows:[

o1 : (2, 3, 5, 1, 4)→ (2,5,1,4, 4)
o2 : (3, 5, 1, 4, 2)→ (3,3,5,1, 2)

]
.

We can observe that o1 has the second 4 repeated, then the cyclic process is 41 → 12,
11 → 52, 51 → 32, then 3 is the replacing value for the repeated 4. In o2 the first 3 is
repeated, then the cyclic process is 32 → 51, 52 → 11, 12 → 41, then 4 is the replacing
value for the repeated 3.[

o1 : (2, 5, 1, 4, 4)→ (2, 5, 1, 4,3)
o2 : (3, 3, 5, 1, 2)→ (4, 3, 5, 1, 2)

]
.

Let n be the size of each permutation (which is in fact the number of vertices by
dimension) and s the number of permutations (dimensions) to repair, the swapping
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Algorithm 20: The partially mapped crossover.

Input: ind1, ind2. The parents to cross.
Result: o1 ∪ o2. The two new individuals after the crossing.

1 Set p1 := random() % father1.assignment.size;
2 Set p2 := random() % father2.assignment.size;
3 Set p1 := min(p1, p2), p2 := max(p1, p2);
4 Set o1 := ind1;
5 Set o2 := ind2;
6 foreach index in p1:p2 do
7 swap(o1.assignment[index], o2.assignment[index]);

// Repair o1

8 foreach dim in 1:s do
9 Set already := An array of n elements initialized with zeros;

10 foreach index in p1:p2 do
11 Set already[ o1.matching[index][dim] ] := index;

12 foreach index in 0 : (n− 1) do
13 if index < p1 or index > p2 then
14 while (next = already[o1.matching[index][dim]]) 6= 0 do
15 Set o1.matching[index][dim] = o2.matching[next][dim];

16 Repair o2 analogous to o1;
17 return {o1 ∪ o2};

process can be performed in O(n) time whereas each repairing process can take O(n)
time and can be required O(n) repairing processes. Then, the time complexity of this
operator is O(sn2).

3.5.3.2 Cycled crossover

The cycled crossover (CX) is a procedure that consists on swapping the elements of
some cyclic permutation between the elements of two vectors. It consists on choosing
a random index and, for each permutation, it swaps all the elements from the two
parents that belong to the cyclic permutation that contains the element pointed by
the chosen index.

Algorithm 21 shows the CX procedure. Initially, we choose a uniformly random
index p1 in the interval [0, n) and each individual of the offspring is copied from its
corresponding parents. Then, the corresponding cyclic permutation at p1 is detected
and we move among all its elements. The two elements from each permutation vector
along the cyclic permutation are swapped.

Suppose we have the permutations ind1 = (2, 3, 1, 5, 4) and ind2 = (3, 1, 2, 4, 5)
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Algorithm 21: The cycled crossover.

Input: ind1, ind2. The parents to cross.
Result: o1 ∪ o2. The two new individuals after the crossing.

1 Set p1 := random() % ind1.assignment.size;
2 Set o1 := ind1;
3 Set o2 := ind2;
4 Let s be the number of dimensions of the assignment;
5 Let n be the number of vertices by dimension;
6 foreach dim in 1:s do
7 Set indexes := An array of n elements;
8 foreach index in 1:n do
9 Set indexes[ o1.matching[i][dim] ] := index;

10 Set start vertex := o1.matching[point][dim];
11 Set index := point;
12 while start vertex 6= o2.matching[index][dim] do
13 Set next point := o2.matching[index][dim];
14 swap(o1.assignment[index][dim], o2.assignment[index][dim]);
15 index := indexes[ next point ];

16 swap(o1.assignment[index][dim], o2.assignment[index][dim]);

17 return {o1 ∪ o2};

and the chosen index p1 = 1. The corresponding offspring are o1 = (2, 3, 1, 5, 4) and
o2 = (3, 1, 2, 4, 5). The cyclic permutation is as follows:[

o1 : (2, 3, 1, 5, 4)→ (2,1, 1, 5, 4)→ (2, 1,2, 5, 4)→ (3, 1, 2, 5, 4)
o2 : (3, 1, 2, 4, 5)→ (3,3, 2, 4, 5)→ (3, 3,1, 4, 5)→ (2, 3, 1, 4, 5)

]
.

Since there are s permutations of size n this process takes O(sn) time. The advantage
of this procedure is that no repairing is required. The disadvantage is that if the cyclic
permutation includes all the elements of the permutation then no new individuals are
generated.

3.5.3.3 Order crossover

The order crossover was also introduced by [Goldberg and Lingle, 1985] for the TSP.
It is similar to the PMX crossover but a different repairing process. The repairing
is performed by removing the duplicated values and replacing them by the missing
values but in the same order as they appear in the opposite parent.

Algorithm 22 shows the OX procedure. After the swapping process, as in PMX,
the repairing process is performed. All the duplicated elements out of the exchanged
segment are replaced with the missing elements of the corresponding permutation
according with their position in the opposite parent, going from the left to right.
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Algorithm 22: The ordered crossover.

Input: ind1, ind2. The parents to cross.
Result: o1 ∪ o2. The two new individuals after the crossing.

1 Set p1 := random() % father1.assignment.size;
2 Set p2 := random() % father2.assignment.size;
3 Set p1 := min(p1, p2), p2 := max(p1, p2);
4 Set o1 := ind1;
5 Set o2 := ind2;
6 foreach index in p1:p2 do
7 swap(o1.assignment[index], o2.assignment[index]);

// Repair o1

8 foreach dim in 1:s do
9 Set flag := An array of n booleans;

10 Set vertices order := An array of n integers;
11 foreach index in 0 : (n− 1) do

// Set true if p1 ≤ i and i ≤ p2, otherwise set false

12 Set flag[ o1.matching[index][dim] ] := (p1 ≤ i and i ≤ p2);
13 Set vertices order[index] := ind2.matching[index][dim];

14 Set next := 0;
15 foreach index in 0 : (n− 1) do
16 if index < p1 or index > p2 then
17 while next < n and flag[vertices order[next]] = True do
18 Set next := next + 1;

19 Set o1.matching[index][dim] = vertices order[next];
20 Set next := next + 1;

21 Repair o2 analogous to o1;
22 return {o1 ∪ o2};

Suppose we have the permutations ind1 = (5, 3, 1, 2, 4) and ind2 = (3, 1, 2, 4, 5)
and the crossing points p1 = 2 and p2 = 4. The corresponding offspring are o1 =
(5, 3, 1, 2, 4) and o2 = (3, 1, 2, 4, 5). The crossing step is as follows:[

o1 : (5, 3, 1, 2, 4)→ (2,1,2,4, 4)
o2 : (3, 1, 2, 4, 5)→ (3,3,1,2, 5)

]
.

Then the repairing process is as follows:[
o1 : (2, 1, 2, 5, 4)→ (∗, 1, 2, 4, ∗)→ (3, 1, 2, 4,5)
o2 : (3, 3, 1, 4, 5)→ (∗, 3, 1, 4, 5)→ (2, 3, 1, 4, 5)

]
.

Since there are s permutations of size n this process takes O(sn) time. The advantage
of this procedure is that the repairing process is faster than in PMX. The disadvantage
is that the general structure of new individuals can be very different.
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3.5.4 The mutation operator

Mutation is a genetic operator used to maintain the diversification from one gener-
ation to the next one. In a mutation process the original solution can be changed
completely. The mutation process should occur with a low probability over the indi-
viduals of a population.

We implemented two different mutations that are followed by an improvement
through a local search. In this way, even when the mutated individual can be very
different to its original version, the local search will be able to, by at least, increase the
quality of such individual. The implemented mutations are the analogous procedures
to some of our basic local search heuristics.

3.5.4.1 The swapping mutation

The swapping mutation SM performs slight changes on a feasible solution. This
mutation is similar to the simple 2-opt heuristic. This operator consists on choosing
two arbitrary indexes from each permutation and swapping them.

Algorithm 23 shows the SM procedure. For each dimension, two random indices,
p1 and p2 are swapped. We decided to swap different points from each dimension
because if we swap the same vertices at all the dimensions it only will change the
vectors of place without representing any change in the current solution. By swapping
a different pair of vertices at each dimension we will make changes in up to 2s vectors.

Algorithm 23: The swapping mutation.

Input: ind. The individual to mutate.
Result: ind. The individual mutated.

1 foreach dim in 1 : s do
2 Set p1 := random() % ind.assignment.size;
3 Set p2 := random() % ind.assignment.size;
4 swap(ind.assignment[p1][dim], ind.assignment[p2][dim]);

5 return {ind};

There are s changes performed in O(1) time each, so the time complexity of this
procedure is O(s).

3.5.4.2 The inversion mutation

The inversion mutation IM performs significant changes on a feasible solution. This
mutation is similar to the inversion heuristic. This operator consists on choosing two
arbitrary indexes from each permutation and reversing all the inclusive interval of
vertices
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Algorithm 24 shows the IM procedure. For each dimension, two random indices,
p1 and p2, are selected and the vertices between the given closed interval given by
[p1, p2] are reversed.

Algorithm 24: The inversion mutation.

Input: ind. The individual to mutate.
Result: ind. The individual mutated.

1 foreach dim in 1:s do
2 Set p1 := random() % ind.assignment.size;
3 Set p2 := random() % ind.assignment.size;
4 while p1 < p2 do
5 swap(ind.assignment[p1][dim], ind.assignment[p2][dim]);
6 Set p1 := p1 + 1;
7 Set p2 := p2 − 1;

8 return {individual};

There are s inversions performed in O(n) time each, so the time complexity of
this procedure is O(sn).

3.5.5 Experimental evaluation

For our experimental evaluation we considered the same five families of instances,
which include the family of instances provided by [Karapetyan and Gutin, 2011b]
to evaluate their state-of-the art memetic algorithm. In the case of our memetic
algorithm we solved the instances by considering all the possible combinations of
selections, crossovers and mutations (for a total of 3 × 3 × 2 = 18 combinations).
We considered a population size of N = 100, a mutation probability mp = 10%, a
survivors probability sp = 50% and a running time of 30 seconds for each instance.
We evaluated our SMA under two variants of DVH: SDV2 and DV2.

Table 3.21 shows the best known values for the set of families of instances consid-
ered in our experimental evaluation. We show the averaged results for ten instances
of each type. In some cases we already know the optimal solutions, thanks to our
MAP-Gurobi, in those cases we highlight with bold the corresponding average. This
table can be used as reference to verify how close are the obtained results of our SMA
from the best known solutions.

Tables 3.22, 3.23 and 3.24 show the results for the families of instances provided
by [Karapetyan and Gutin, 2011b] plus our additional set of ten instances for s = 4
with n = 50 and for s = 5 with n = 30 for each family of instances. In this case,
the RSE is higher in the case of the Random family which is due to the fact that the
SDV2 and DV2 provide a lower quality solution error for this family of instances. An
alternative for the Random family of instances can be to use the local searches SDV3
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Table 3.21: Averaged best known solutions.

s n Random Clique SquareRoot Geometric Product
(r) (cq) (sq) (g) (p)

4 20 20.0 1901.8 929.3 2380.5 8397.3
4 30 30.0 2281.9 1118.6 3015.2 13154.1
4 40 40.0 2606.3 1271.4 3523.8 16810.0
4 50 50.0 3120.5 1530.1 4102.3 20705.6
5 15 15.0 3110.7 1203.9 3423.7 21422.8
5 18 18.0 3458.6 1343.9 3799.3 23371.5
5 25 25.0 4192.7 1627.5 4594.9 30150.4
5 30 30.0 4677.9 1852.4 5036.8 34818.0
6 12 12.0 4505.6 1436.8 4483.7 7421.0
6 15 15.0 5133.4 1654.6 5242.4 8888.9
6 18 18.0 5765.5 1856.3 5767.4 9610.1

Avg - 24.8 3705.0 1438.6 4124.5 17704.5

or DV3 as part of our SMA, however, these heuristics are able to find the optimal
values for this family of instances, then we consider unnecessary to solve this set
of instances with such combination. It is an example in which our heuristics SDV3
and DV3 are stronger than a meta-heuristic. In the case of the families of instances
Clique and Square Root our SMA provides similar quality results to those reported
by the state-of-the-art memetic algorithm. For the family of instances Clique the
RSE of SMA combined with the SDV2, considering the elitist selection, the CX and
the IM operators, is approximately 0.3% whereas for the state-of-the-art memetic
algorithm is 0.1%. For the family of instances Clique the RSE of SMA combined
with the SDV2, considering the elitist selection, the CX and the IM operators, is
approximately 0.7% whereas for the state-of-the-art memetic algorithm is 0.2%. In
summary, the obtained results of the SMA combined with the SDV3 are superior to
those obtained with the only use of SDV3 and DV3 and are competitive against the
state-of-the-art memetic algorithm. It is important to mention that the RSE of the
state-of-the-art memetic algorithm were obtained after running times of 300 seconds
whereas ours were obtained in 30 seconds.

Finally, we evaluated our proposed set of instances of the families Geometric and
Product. Tables 3.25 and 3.26 show the obtained results. In the case of the Geometric
family the SMA combined with either SDV2 or DV2 is able to find the optimal
solutions in all the evaluated instances. In the case of the Product family the SMA
combined with the DV2 got the best solutions, overall considering the roulette wheel
selection, the PMX and the IM operators, obtaining a RSE of approximately 2.1%.
For the Product family can be considered to combine the SMA with the SDV3 or the
DV3, however the only use of such local searches provides a RSE of approximately
0.4%.
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Table 3.22: Random under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Elitist Elitist

4r20 28.2 27.9 29.3 28.4 28.9 28.0 25.7 25.6 26.2 25.6 25.7 25.9
4r30 39.7 38.9 39.7 40.6 40.2 40.2 36.1 36.4 37.1 36.0 35.6 36.5
4r40 48.5 48.0 49.0 49.0 48.9 48.6 45.2 44.9 45.9 45.5 45.1 45.5
4r50 57.0 57.6 58.0 58.2 57.6 58.5 53.7 54.0 54.4 53.5 54.4 53.8
5r15 21.2 20.6 21.3 20.8 20.8 21.3 17.8 17.7 17.7 18.0 17.6 18.0
5r18 25.5 25.0 25.9 25.7 24.9 25.1 20.7 21.0 21.0 21.6 20.9 21.1
5r25 33.4 33.5 33.8 32.7 33.4 33.0 28.3 28.3 28.2 27.9 28.0 28.3
5r30 38.7 37.9 38.5 38.6 38.5 37.7 32.9 32.9 33.6 33.3 33.1 32.7
6r12 16.5 16.6 16.9 17.1 17.1 16.5 13.3 13.0 13.2 13.3 12.8 12.9
6r15 21.2 20.0 21.7 20.9 20.4 21.2 16.2 15.8 16.3 16.6 16.2 15.8
6r18 24.4 24.3 24.4 24.8 24.4 24.9 19.3 19.3 19.8 19.1 19.1 19.5
Avg 32.2 31.8 32.6 32.4 32.3 32.3 28.1 28.1 28.5 28.2 28.0 28.2
RSE 29.8 28.2 31.5 30.6 30.2 30.2 13.3 13.3 14.9 13.7 12.9 13.7

Tournament Tournament

4r20 28.5 28.7 29.3 28.6 29.3 29.8 25.4 24.9 26.1 25.6 26.0 25.9
4r30 40.1 39.2 40.9 39.8 40.2 40.3 36.2 36.3 36.3 36.4 36.3 36.3
4r40 49.5 48.8 49.4 49.6 49.3 49.1 45.4 44.7 45.3 45.4 45.2 45.6
4r50 57.3 57.6 57.9 56.9 58.0 57.7 53.9 53.8 54.4 54.6 53.8 54.4
5r15 20.8 21.4 21.7 21.2 21.3 20.6 17.7 17.6 17.8 17.7 17.6 17.2
5r18 25.3 25.0 25.8 26.0 25.6 25.7 20.9 20.9 20.7 20.8 21.1 21.2
5r25 33.4 33.4 32.8 33.5 32.9 33.1 28.5 28.5 28.4 28.5 27.6 28.1
5r30 37.9 38.0 38.0 37.7 38.4 37.7 32.8 32.8 33.5 33.0 33.1 33.3
6r12 16.8 16.0 16.8 16.8 17.0 16.5 13.0 13.0 12.6 12.9 12.9 13.1
6r15 20.8 20.8 20.9 20.8 21.2 20.5 16.3 16.2 16.1 16.0 16.7 16.4
6r18 23.9 24.1 24.3 24.8 24.4 25.1 19.4 19.0 19.1 19.5 19.3 19.4
Avg 32.2 32.1 32.5 32.3 32.5 32.4 28.1 28.0 28.2 28.2 28.1 28.3
RSE 29.8 29.4 31.0 30.2 31.0 30.6 13.3 12.9 13.7 13.7 13.3 14.1

Roulette wheel Roulette wheel

4r20 29.1 28.4 29.4 28.5 29.2 29.5 26.1 25.9 26.7 26.4 25.4 25.6
4r30 39.8 39.9 40.0 40.6 40.3 39.9 35.9 35.8 36.6 36.6 36.7 36.9
4r40 49.2 49.4 50.0 49.4 49.6 49.7 45.3 45.3 45.8 45.6 44.8 45.2
4r50 57.5 57.2 58.6 58.3 58.0 57.4 54.0 53.9 54.3 54.5 54.3 54.0
5r15 21.7 21.3 20.6 21.5 21.8 22.1 17.7 17.5 18.0 18.1 17.8 17.5
5r18 25.1 25.3 25.4 25.8 25.5 25.4 21.2 21.0 21.0 21.1 21.1 21.5
5r25 33.6 32.9 33.3 34.0 34.1 33.5 28.0 28.1 28.4 28.5 28.3 28.6
5r30 38.5 38.7 39.7 38.5 38.4 38.7 33.0 33.0 33.4 33.1 33.2 32.8
6r12 16.2 16.4 16.7 17.4 16.3 16.9 13.6 12.7 13.1 12.8 13.1 13.1
6r15 19.9 21.0 21.2 20.9 20.9 20.9 16.3 16.7 16.3 16.2 16.5 16.4
6r18 25.1 24.1 25.2 24.7 23.5 23.9 19.5 19.0 19.6 19.5 19.5 19.6
Avg 32.3 32.2 32.7 32.7 32.5 32.5 28.2 28.1 28.5 28.4 28.2 28.3
RSE 30.2 29.8 31.9 31.9 31.0 31.0 13.7 13.3 14.9 14.5 13.7 14.1
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Table 3.23: Clique under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Elitist Elitist

4cq20 1901.9 1901.9 1901.9 1901.8 1901.8 1902.2 1901.9 1901.8 1902.2 1901.8 1901.8 1902.2
4cq30 2294.2 2293.6 2291.3 2293.1 2315.6 2312.4 2291.7 2288.3 2291.1 2293.1 2317.3 2312.7
4cq40 2679.0 2674.6 2647.0 2639.3 2752.4 2752.0 2692.1 2684.7 2657.0 2654.3 2761.8 2766.1
4cq50 3196.7 3178.4 3178.4 3159.0 3283.9 3270.5 3259.1 3235.2 3233.1 3230.3 3294.9 3323.6
5cq15 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7
5cq18 3459.4 3458.6 3459.4 3458.6 3458.6 3460.1 3459.4 3459.4 3458.6 3459.3 3459.4 3459.4
5cq25 4204.3 4204.8 4205.2 4201.0 4247.8 4226.4 4216.5 4207.3 4206.2 4205.1 4259.5 4260.6
5cq30 4712.3 4713.5 4701.8 4699.3 4839.7 4803.7 4744.0 4725.4 4729.2 4704.8 4827.8 4816.0
6cq12 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4507.1 4506.8 4505.6 4505.6 4505.6
6cq15 5134.4 5134.4 5134.4 5133.4 5133.4 5133.4 5136.9 5133.7 5136.4 5139.3 5139.3 5145.3
6cq18 5775.4 5775.7 5785.2 5777.2 5779.3 5772.8 5794.1 5795.4 5795.1 5809.4 5822.6 5832.0
Avg 3724.9 3722.9 3720.1 3716.3 3757.2 3750.0 3737.5 3731.7 3729.7 3728.5 3763.7 3766.7
RSE 0.5 0.5 0.4 0.3 1.4 1.2 0.9 0.7 0.7 0.6 1.6 1.7

Tournament Tournament

4cq20 1901.8 1901.8 1901.9 1901.9 1902.1 1902.1 1901.9 1902.2 1902.7 1902.2 1902.4 1902.5
4cq30 2297.8 2292.3 2295.2 2294.3 2335.7 2320.2 2291.9 2293.7 2298.3 2299.5 2340.0 2328.8
4cq40 2695.7 2696.4 2675.7 2652.8 2757.9 2768.8 2701.3 2701.5 2678.0 2661.1 2776.3 2767.4
4cq50 3216.4 3219.2 3193.5 3175.7 3305.2 3290.8 3249.3 3254.9 3234.5 3228.3 3305.1 3327.7
5cq15 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7
5cq18 3460.1 3460.1 3460.1 3460.1 3460.1 3462.2 3460.1 3459.4 3460.1 3459.3 3462.6 3459.4
5cq25 4212.1 4203.9 4205.5 4205.5 4267.1 4250.7 4219.6 4218.1 4213.9 4212.6 4263.5 4282.5
5cq30 4767.0 4732.3 4712.0 4700.0 4839.2 4848.3 4782.5 4770.5 4717.1 4726.4 4853.3 4894.0
6cq12 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6
6cq15 5133.4 5134.4 5134.4 5134.4 5134.4 5135.6 5138.3 5137.4 5134.6 5139.0 5147.0 5139.9
6cq18 5776.4 5775.3 5779.3 5779.9 5789.1 5789.1 5808.4 5811.1 5799.5 5800.4 5841.4 5828.5
Avg 3734.3 3730.2 3724.9 3720.1 3764.3 3762.2 3742.7 3742.3 3732.3 3731.4 3773.4 3777.0
RSE 0.8 0.7 0.5 0.4 1.6 1.5 1.0 1.0 0.7 0.7 1.8 1.9

Roulette wheel Roulette wheel

4cq20 1901.8 1903.4 1903.1 1902.3 1903.8 1902.4 1902.7 1901.8 1903.1 1901.8 1902.4 1903.0
4cq30 2301.5 2296.4 2293.0 2295.6 2315.1 2320.6 2301.6 2300.0 2298.3 2291.8 2310.9 2323.9
4cq40 2701.8 2678.6 2666.0 2673.4 2751.5 2754.3 2680.6 2683.4 2675.9 2672.8 2760.2 2749.4
4cq50 3208.6 3194.2 3166.0 3186.5 3277.7 3273.7 3225.1 3258.8 3220.7 3207.9 3275.6 3277.8
5cq15 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7
5cq18 3460.6 3458.6 3459.3 3459.4 3459.4 3459.4 3460.1 3460.6 3460.1 3460.1 3459.4 3458.9
5cq25 4223.8 4218.0 4218.3 4208.4 4242.8 4227.2 4229.5 4229.6 4216.2 4217.3 4274.6 4271.6
5cq30 4749.0 4714.1 4726.9 4713.1 4779.6 4788.8 4770.9 4762.4 4744.2 4724.1 4801.1 4855.4
6cq12 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4506.8 4505.6 4505.6 4505.6
6cq15 5133.4 5135.6 5133.4 5134.4 5133.6 5135.1 5144.8 5139.1 5138.5 5136.6 5145.9 5148.1
6cq18 5780.3 5783.5 5782.4 5776.0 5782.3 5797.5 5811.3 5816.0 5798.8 5804.7 5823.9 5826.2
Avg 3734.3 3727.2 3724.1 3724.1 3751.1 3752.3 3740.3 3742.5 3733.9 3730.3 3760.9 3766.4
RSE 0.8 0.6 0.5 0.5 1.2 1.3 1.0 1.0 0.8 0.7 1.5 1.7
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Table 3.24: Squareroot under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Elitist Elitist

4sq20 929.4 931.1 929.7 929.7 929.4 929.3 930.2 930.5 929.7 929.4 930.1 931.0
4sq30 1122.3 1122.3 1119.7 1126.1 1146.7 1138.0 1123.1 1121.6 1126.9 1122.3 1148.3 1144.5
4sq40 1335.4 1313.0 1311.9 1295.9 1362.1 1366.3 1336.0 1322.1 1306.0 1304.8 1366.8 1366.0
4sq50 1597.4 1592.2 1577.1 1567.4 1637.8 1636.0 1630.8 1621.9 1611.7 1607.2 1645.7 1648.3
5sq15 1203.9 1205.0 1206.8 1205.3 1206.5 1204.9 1205.0 1204.7 1206.8 1205.3 1204.9 1204.8
5sq18 1345.2 1346.9 1346.7 1349.3 1345.5 1345.1 1348.0 1345.4 1347.3 1347.8 1345.9 1349.1
5sq25 1642.0 1645.2 1637.0 1647.1 1670.0 1669.9 1672.5 1667.8 1658.2 1643.6 1694.0 1699.8
5sq30 1896.3 1881.8 1871.2 1863.0 1941.3 1934.3 1934.5 1939.2 1927.2 1928.4 1962.3 1956.7
6sq12 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8
6sq15 1657.3 1656.2 1658.3 1658.0 1658.8 1657.8 1658.9 1658.1 1658.7 1660.0 1660.7 1661.9
6sq18 1859.1 1858.4 1858.7 1860.4 1861.4 1858.6 1867.5 1864.5 1867.2 1866.5 1888.2 1879.6
Avg 1456.8 1453.5 1450.4 1449.0 1472.4 1470.6 1467.6 1464.8 1461.5 1459.3 1480.3 1479.9
RSE 1.3 1.0 0.8 0.7 2.3 2.2 2.0 1.8 1.6 1.4 2.9 2.9

Tournament Tournament

4sq20 930.6 930.8 930.1 930.6 931.2 931.3 929.6 929.3 930.0 929.7 931.8 931.8
4sq30 1125.6 1123.8 1124.5 1122.7 1157.5 1149.2 1132.2 1129.3 1129.3 1125.1 1151.8 1151.1
4sq40 1344.6 1332.6 1324.9 1303.3 1381.5 1385.0 1336.7 1333.7 1328.5 1322.1 1376.9 1380.7
4sq50 1611.3 1606.3 1592.6 1570.2 1652.3 1664.8 1622.6 1629.5 1610.4 1605.6 1657.0 1652.2
5sq15 1205.5 1205.3 1205.1 1205.5 1205.1 1205.5 1205.7 1203.9 1204.4 1205.5 1207.3 1205.1
5sq18 1344.8 1347.0 1347.8 1348.5 1347.9 1346.4 1347.1 1344.7 1351.7 1348.5 1346.5 1349.1
5sq25 1644.5 1644.3 1639.4 1648.8 1685.7 1672.7 1672.1 1667.8 1666.7 1658.8 1711.9 1697.6
5sq30 1897.4 1896.3 1881.5 1867.2 1951.2 1941.9 1946.3 1934.8 1944.6 1934.2 1960.8 1961.4
6sq12 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1437.7 1436.8 1436.8
6sq15 1656.4 1657.5 1657.8 1656.9 1659.0 1658.7 1658.9 1657.9 1660.8 1660.9 1666.8 1661.3
6sq18 1859.7 1860.3 1860.7 1858.1 1867.3 1865.9 1871.7 1873.9 1865.9 1866.2 1888.1 1886.2
Avg 1459.7 1458.3 1454.7 1449.9 1479.6 1478.0 1469.1 1467.4 1466.3 1463.1 1485.1 1483.0
RSE 1.5 1.4 1.1 0.8 2.8 2.7 2.1 2.0 1.9 1.7 3.2 3.1

Roulette wheel Roulette wheel

4sq20 929.8 930.7 930.1 930.5 933.3 931.2 931 931.1 930.8 931.5 930.9 932.1
4sq30 1133.6 1127.2 1130.7 1129.4 1160.9 1144.5 1138.0 1133.4 1134.3 1126.7 1159.3 1152.2
4sq40 1344.5 1339.3 1332.9 1320.3 1373.8 1374.0 1337.8 1334.6 1332.2 1328.4 1373.1 1371.3
4sq50 1616.9 1606.9 1589.8 1579.7 1639.7 1632.3 1635.2 1630.1 1606.7 1605.1 1647.6 1647.4
5sq15 1204.2 1204.8 1204.7 1205.2 1204.7 1205.1 1205.9 1205.5 1204.7 1204.4 1205.6 1204.7
5sq18 1346.4 1347.4 1346.6 1350.5 1348.2 1347.3 1348.7 1346.8 1347.0 1348.8 1351.8 1350.0
5sq25 1644.4 1644.7 1647.4 1654.5 1660.8 1680.8 1683.2 1667.6 1672.8 1669.1 1699.6 1687.2
5sq30 1914.3 1917.4 1894.9 1888.0 1947.1 1947.4 1942.5 1930.1 1927.7 1928.5 1966.4 1972.8
6sq12 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1437.5 1436.8 1436.9 1436.8
6sq15 1658.6 1658.2 1657.9 1656.5 1659.4 1656.3 1664.1 1658.4 1663.4 1661.7 1665.1 1663.4
6sq18 1859.3 1859.9 1860.7 1859.3 1870.0 1864.1 1872.6 1870.8 1872.2 1868.4 1889.3 1890.4
Avg 1462.6 1461.2 1457.5 1455.5 1475.9 1474.5 1472.3 1467.7 1466.3 1464.5 1484.1 1482.6
RSE 1.7 1.6 1.3 1.2 2.6 2.5 2.3 2.0 1.9 1.8 3.2 3.1
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The multidimensional assignment problem 96

Table 3.25: Geometric under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Elitist Elitist

4g20 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2
4g40 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8
4g50 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3
5g15 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3
5g25 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9
5g30 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8
6g12 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7
6g15 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4
6g18 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4
Avg 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5
RSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Tournament Tournament

4g20 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2
4g40 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8
4g50 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3
5g15 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3
5g25 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9
5g30 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8
6g12 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7
6g15 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4
6g18 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4
Avg 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5
RSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Roulette wheel Roulette wheel

4g20 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2
4g40 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.9
4g50 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3
5g15 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3
5g25 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9
5g30 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8
6g12 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7
6g15 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4
6g18 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4
Avg 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.6
RSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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The multidimensional assignment problem 97

Table 3.26: Product under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Elitist Elitist

4p20 8397.5 8397.5 8397.8 8397.7 8397.7 8397.6 8397.4 8397.4 8397.4 8397.4 8397.4 8397.3
4p30 13154.3 13154.3 13154.6 13154.6 13154.5 13154.5 13154.2 13154.2 13154.2 13154.2 13154.2 13154.2
4p40 16811.0 16811.1 16811.1 16811.1 16811.1 16811.1 16810.2 16810.2 16810.3 16810.3 16810.3 16810.2
4p50 20709.5 20709.4 20709.8 20710.4 20709.7 20709.5 20706.6 20706.6 20706.7 20706.5 20706.6 20706.6
5p15 21592.3 21427.3 21744.5 21580.4 21429 21710.9 21423.2 21423 21423.5 21423.3 21423.1 21423.1
5p18 23589.2 23493.7 24500.7 24274.8 23640.5 23658.9 23371.7 23371.5 23513.9 23372.2 23531.6 23513.9
5p25 30543.6 30916.7 33519.6 32275.5 31990.2 31456.2 31001.6 31367.2 31576.8 31017.6 31016.6 30859.8
5p30 38024.6 37337.5 42653.9 41361.3 40490.0 41129.4 37376.7 37485.5 37600.1 37089.4 37524.7 37564.7
6p12 11570.5 11221.3 14602.2 13797.3 12916.3 12817.3 8048.1 7821.4 8254.7 8047.1 8214.1 7970.8
6p15 17356.6 17263.8 21627.3 21183.2 20966.1 18603.5 9917.4 9774.7 9853.3 10154.4 9996.5 9941.8
6p18 23289.9 22307.4 27821.6 27188.7 26449.5 27009.9 11236.2 11217.3 11291 11495.1 11347.8 11269.8
Avg 20458.1 20276.4 22322.1 21885.0 21541.3 21405.3 18313.0 18320.8 18416.5 18333.4 18374.8 18328.4
RSE 15.6 14.5 26.1 23.6 21.7 20.9 3.4 3.5 4 3.6 3.8 3.5

Tournament Tournament

4p20 8397.7 8397.8 8397.8 8398 8397.6 8397.9 8397.4 8397.4 8397.4 8397.4 8397.4 8397.4
4p30 13154.6 13154.5 13154.8 13154.5 13154.6 13154.5 13154.2 13154.2 13154.2 13154.1 13154.2 13154.2
4p40 16811.2 16811.0 16811.5 16811.1 16811.0 16811.1 16810.2 16810.3 16810.2 16810.2 16810.3 16810.2
4p50 20709.4 20709.5 20710.0 20709.8 20709.8 20709.3 20706.5 20706.6 20706.7 20706.7 20706.7 20706.5
5p15 21428.8 21696.6 21883.0 21699.0 21745.0 21714.2 21423 21423 21423.3 21423.2 21423.1 21423.0
5p18 23448.5 23654.7 24596.5 25071.9 24307.6 24429.9 23945.3 23942.9 23389.3 23513.2 23372.1 23513.7
5p25 32824.2 30920.0 35888.0 35183.3 33184.5 32460.9 31383.0 31016.7 31383.5 31449.4 31813.5 31017.8
5p30 40104.0 39074.8 43442.8 43648.6 42383.1 42450.1 36704.8 37272.8 36936.4 37069.0 37620.4 38572.3
6p12 13248.3 12212.4 15569.1 15116.3 15430.0 14218.1 8093.5 8161.2 8273.1 8410.2 8095.8 8182.5
6p15 19463.9 19229.0 23572.0 22360.3 21930.2 20937.6 10183.1 10055.4 10033.6 10069.4 10308.8 10024.5
6p18 25515.2 24496.8 29148.5 28334.8 28623.4 27654.8 11536.2 10995.2 11451.7 11234.2 11484.7 11142.6
Avg 21373.3 20941.6 23015.8 22771.6 22425.2 22085.3 18394.3 18357.8 18359.9 18385.2 18471.5 18449.5
RSE 20.7 18.3 30 28.6 26.7 24.7 3.9 3.7 3.7 3.8 4.3 4.2

Roulette wheel Roulette wheel

4p20 8397.8 8397.9 8397.9 8397.8 8397.9 8397.9 8397.4 8397.4 8397.4 8397.4 8397.4 8397.4
4p30 13154.7 13154.7 13154.6 13154.8 13154.6 13154.5 13154.2 13154.2 13154.2 13154.2 13154.2 13154.2
4p40 16810.8 16810.9 16811.5 16811.5 16811.1 16811.2 16810.3 16810.1 16810.3 16810.3 16810.3 16810.3
4p50 20710.0 20709.6 20710.2 20710.2 20709.7 20709.6 20706.6 20706.5 20706.6 20706.7 20706.7 20706.5
5p15 21424.0 21543.9 21741.3 21740.8 21860.9 21860.9 21422.8 21422.8 21423.0 21423.0 21423.1 21422.9
5p18 23492.4 23510.2 24389.6 23915.6 23602.3 24081.9 23371.5 23371.6 23512.7 23371.6 23942.8 23371.8
5p25 30859.5 31530.6 32609.0 32860.1 32205.1 31568.9 30346.2 30630.4 30779.3 31878.0 30888.8 30532.6
5p30 38479.1 38223.4 40895.7 41565.1 40233.0 39435.9 36811.9 36273.4 36816.1 37024.5 37242.6 37799.2
6p12 10379.4 11092.0 11504.3 12163.2 11936.7 11046.8 7750.3 7856.7 8160.9 7953.3 8125.2 7857.8
6p15 15423.0 13915.9 16535.4 17123.8 15788.5 16233.2 9841.1 9581.2 9932.6 9555.6 9850.9 9700.2
6p18 18579.6 16463.7 20411.1 18797.7 19929.2 18233.0 11304.9 10640.7 10833.1 11084.3 11428.1 10979.9
Avg 19791.8 19577.5 20651.0 20658.2 20420.8 20139.4 18174.3 18076.8 18229.7 18305.4 18360.9 18248.4
RSE 11.8 10.6 16.6 16.7 15.3 13.8 2.7 2.1 3.0 3.4 3.7 3.1
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The multidimensional assignment problem 98

In conclusion, we consider that the most difficult families of instances are Clique
and Square Root for which the use of SMA combined with either SDV3 or DV3 can
be considered. For the rest of the cases the only use of SDV3 or DV3 provide high
quality solutions. We want to highlight that higher running times of our SMA even
can result in better results. We let all those analysis as future work since for our
purposes we have a strong set of algorithms, heuristics and meta-heuristics to solve
a wide variety of instances of MAP.
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Chapter 4

Personnel assignment problems:
the school timetabling problem as
a case of study

In different problem contexts it is required to assign people to objects, such as employ-
ees to jobs, employees to offices, professors to courses, job seekers to vacant positions,
etc. Each assignment has a value and, depending on the perspective, we wish either
to minimize the total value, in which case the value is a cost, or maximize it, in
which case the value is a benefit. The correct assignment of people will increase the
productivity of the involved process.

The set of problems in which is required the assignment of people to resources are
known as personnel assignment problems (PAP).

Consider the case when a university has n1 professors to fill n2 courses. Based on
the aptitude and experience of each professor, such as previously taught courses, re-
searching line, approval rating, number of times that such a class was taught, among
others. In addition, can it be required to assign the professor into a classroom be-
tween a set of n3 classrooms. Some aspects as the equipment of the classroom, if
the classroom have computers, number of blackboards, etc, could be considered to
perform the assignment. Finally, time restrictions of the professor or for the required
time to teach the class can be considered from a set of n4 time slots. The objective
is to identify an assignment of professors to courses to classrooms to time slots that
minimizes the total cost overall possible assignments. This problem is named school
timetabling problem (STC).

Each problem of assignment of personnel has its own restrictions and considera-
tions and can it be a difficult task to identify them and, even more, to weight them.

We will tackle the school timetabling problem as a case of study of personnel
assignment problems, however the same considerations and restrictions can be applied
to other problems.
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4.1 State of the art

There are many works that deal with different personnel assignment problems, how-
ever, just a few modeled them as multidimensional assignment problems. Here we
decided to focused our study of the state-of-the-art in the personnel assignment prob-
lem related to the school timetabling problem.

Early in the sixties, [Lewis, 1961] introduced the school timetabling problem as a
problem in which some pupils required to be assigned into classes, commonly between
4 and 6 classes in total. In these formulation the teachers and classrooms were relevant
for the assignment.

In the late sixties, [Wolfenden and Johntson, 1969] presented more requirements
of a program for timetabling. They form a list in which each entry specifies a list of
items which must be available simultaneously for certain number of time slots. An
item can be a professor, a class, a classroom and, a time slot.

In the same years, [Lawrie, 1969] described an integer linear programming model o
a school timetabling but considering each combination of items or sets under bipartite
graphs, then by combining the solutions get a set timetables. They solved their model
by applying some branching procedures.

In the middle seventies, [Dempster et al., 1975] provided a brief description of the
development of computer-based school timetabling systems in the UK. This is a good
document for starting to evaluate between a set of different approaches to tackle the
STP. Ideas like preassignments (some professor/class must occur on certain time slot),
preference preassignments (some professor/class must occur in one of some preselected
time slots), consecutive periods (some professor/class must occur within a certain
section of time slots), setting requirements (a set of professors/classes must occur
at the same time slots), special rooms (some professor/class must occur in s special
room). We adopt some of this ideas in order to added them into our formulation.

In the middle eighties, [de Werra, 1985] provided some models with an emphasis
on graph theoretical models. This work is another excellent reference for staring to
model a STP in many different ways adopting the best one according to the problem
restrictions. In their most relevant model, they described a model aimed to assign
classes to teachers to time slots through a couple of bipartite graphs. Instead of solv-
ing a 3AP they join the bipartite graph of classes to teachers to the bipartite graph
of teachers to time slots and solved through a flow network by adding a source vertex
to the classes vertices and a sink vertex from the time slots vertices. Such formula-
tion have been commonly used by many authors since the complexity of solving this
problem is similar to solve two normal assignment problems.

In the late nineties, [Burke et al., 1997] provided a new analysis of the state of
the art for the STP and provided ideas for larger size instances. They divided the
constraints provided by other authors in hard constraints and soft constraints for
the STP. A timetable which breaks a hard constraints is not a feasible solution, soft
constraints can be violated but with an involved cost. They provided some basic ideas
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for different types of heuristics to solve the STP such as genetic algorithms, memetic
algorithms, simulated annealing, tabu search and constraint logic programming.

In the middle 2000’s, [Cambazard et al., 2005] proposed an interactive constraint
programming model in which can be either added or removed constraints. This type
of techniques are called dynamic constraint satisfaction problem in which we have a
sequence of static constraint satisfaction problems where each constraint satisfaction
problem is the consequence of addition or retraction of a constraint in the preceding
problem.

In 2007, [Abdullah et al., 2007b] proposed a randomized iterative improvement
algorithm with composite neighborhood structures for the STP. A composite neigh-
borhood structure subsumes two or more neighborhood structures. The advantage
of such process is to move along neighborhoods that two structures cannot reach by
itself. Given an initial randomly generated feasible solution and given a set of neigh-
borhood structures, at each iteration of the process all the neighborhood structures
are evaluated and if some provides a better solution it is accepted with some pre-
established probability. This process is similar to a local search heuristic with the
difference that the probability of acceptance of a solution makes the process stochas-
tic. In the same year, [Abdullah et al., 2007a] also proposed a memetic algorithm for
the STP which consisted on a basic genetic algorithm combined with their previously
developed heuristic.

In 2008, [Cerdeira-Pena et al., 2008] proposed a memetic algorithm which con-
sisted of a basic genetic algorithm combined with a 2−opt based local search heuristic.
They applied several selection operators, e. g. tournament and elitist, and a muta-
tion operators that changes dynamically its probability of be applied when no better
solutions are found. In the same year, [Jat and Yang, 2008] proposed other memetic
algorithm which consisted of a basic genetic algorithm combined with two different
local search heuristics, under the claim that such combination provided higher quality
results. At the same time, [Lara et al., 2008] proposed other evolutionary algorithm
but of a different type: a bee algorithm. A bee algorithm is a population based
search algorithm that somehow measure the topological distance between solutions.
This type of algorithm performs a local search combined with a random search and,
by evaluating the solutions using a fitness function, determine a new population of
bees. All these heuristics were tested on real life instances of their corresponding
universities, claiming practical good results for the timetable generation.

In recent years, several genetic and memetic algorithms have been proposed for the
STP, e. g. [Raghavjee and Pillay, 2009], [Qaurooni, 2011], [Budiono and Wong, 2011],
[Doulaty et al., 2013], [Fonseca and Santos, 2013], but they only change in the type
of hard and soft restrictions to consider and in the basic genetic operators as well as
in the way to generate the initial population. However, no one of such procedures
solve the timetabling problem modeled as a 4AP.
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4.2 Modeling the school timetabling problem as a

MAP

The school timetabling problem can be formulated as a 4−dimensional assignment
problem (4AP). Given a set of n1 professors, n2 courses, n3 classrooms and n4 time
slots and the corresponding 4-dimensional matrix of costs Cn1n2n3n4 where the entry
cijkm is the cost of assigning the professor pi to the class cj to the classroom rk to the
time slot tm with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3, 1 ≤ m ≤ n4 the 0-1 integer
linear programming formulation is:

min

n1∑
i=1

n2∑
j=1

n3∑
k=1

n4∑
m=1

cijkmbijkm

subject to :

n2∑
j=1

n3∑
k=1

n4∑
m=1

bijkm = 1 for i with 1 ≤ i ≤ n1

n1∑
i=1

n3∑
k=1

n4∑
m=1

bijkm = 1 for j with 1 ≤ j ≤ n2

n1∑
i=1

n2∑
j=1

n4∑
m=1

bijkm = 1 for k with 1 ≤ k ≤ n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

bijkm = 1 for m with 1 ≤ m ≤ n4

(4.1)

where bijkm ∈ {0, 1} for all 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3, 1 ≤ m ≤ n4.

The first set of restrictions establishes that a professor will be assigned to one class
into a classroom at some time slot. The second set of restrictions establishes that each
class will be taught by one professor into a classroom at some time slot. The third set
of restriction establishes that each classroom will be used by one professor teaching
his corresponding class at some time slot. The last set of restrictions establishes
that each time slot it is only available for one professor teaching some class into a
classroom.

By considering that not necessarily n1 = n2 = n3 = n4 then some elements from
each set will not be present in the final assignment.

In practice, the set of professors and courses will be greater than the set of class-
rooms and time slots. However, each classroom frequently can be used at all of the
time slots and a time slot can be used to taught simultaneously several courses. The
only case when the same time slot cannot be used more than once is when all the
courses need to be taken for a particular group of people. In particular, when all
the classrooms can be used at any time slot then we can reduce this problem in one
dimension and to solve either n3 times a 3AP or n4 times a 3AP.
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Even when a 3AP remains NP-hard we already have a strong machinery (the
MAP-Gurobi) that is able to solve instances of 3AP up to 130 vertices by dimension
in a few minutes whereas instances of 4AP can be solved up to 20 or 30 vertices by
dimension in some minutes. Anyway if the required instance is greater than this sizes
the heuristics we introduced can provided a good approach.

4.2.1 Setting up the costs matrix for the STP

One of the main problems is to obtain the corresponding costs matrix for the sAP to
solve. We propose two criteria to perform this task.

4.2.1.1 Binary costs matrix

The simplest way for setting up the cost of all the vectors or hyperedges of the instance
is to set a 0 value for the valid combinations and a 1 for the invalid ones. The idea is
to identify the set of valid combinations and set the rest as invalids.

In practice, each professor is able to taught a very small number of courses, usually
≤ 10. Moreover, each professor is only able to taught such class in some of the
available time slots. For instance, in some universities time slots use to be of one
hour, one hour and a half and, two hours. When time slots are of one hour then a
day can have until 15 time slots (considering a school day from 7:00 a.m. until 10
p.m.). Commonly professors are only available until eight hours from a predefined
schedule time, which represents only the half of such time slots.

From the perspective of the courses, some of them need to be imparted in a class-
room with special requirements such as laboratory instrumental, computer machines,
projectors and classroom capacity. Such restrictions can help to reduce significantly
the number of available combinations.

Depending on the logistic of each school more restrictions can be considered and
can help to reduce the number of possible valid combinations.

In order to perform this task in an easier way we propose to generate a set of
bipartite graphs which set the possible valid combination in a simple way, aimed to
generated an instance in a similar way to the Clique family of instances for the MAP.

In this case we require the next bipartite graphs:

1. Professors-courses.

2. Professors-time slots.

3. Courses-classrooms.

There are other combinations, however them do not represent realistic restrictions
or are already cover by the provided combinations, for example, is not common to have
a professor with a preference over some classroom at least some special requirement
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must be covered, in which case such restriction will be excluded from the assignment
problem.

The final 4-dimensional matrix will have a 0 value for the combinations allowed
according with the given bipartite graphs.

For example, suppose to have n1 = 4, n2 = 4, n3 = 4 and n4 = 4. Suppose that
professor p2, is only able to give the course c1 and c4, in the time slots t1, t3 and t4.
In addition, suppose that the class c1 requires to be set in the classrooms r1 and r4
whereas the class c2 requires to be set in the classrooms r1 and r3.

If we were allowing all the possible combinations for each professor then a total
of 64 would be set for p2, however, under the given restrictions just a set of 12
combinations are valid.

(p2, c1, r1, t1) (p2, c1, r1, t3) (p2, c1, r1, t4)
(p2, c1, r4, t1) (p2, c1, r4, t3) (p2, c1, r4, t4)
(p2, c2, r1, t1) (p2, c2, r1, t3) (p2, c2, r1, t4)
(p2, c2, r4, t1) (p2, c2, r4, t3) (p2, c1, r4, t4)

 .

All these vectors will have a 0 cost in the 4−dimensional costs matrix and the rest
that consider professor p2 will have a 1 value.

4.2.1.2 Priority costs matrix

The binary costs matrix has the disadvantage that all the valid vectors or combina-
tions have the same weight whereas in practice some restrictions can have a higher
priority over others.

For example can be more important to set professors to courses, then professors
to time slots and, finally, courses to classrooms.

A very simple way to model a priority of a bipartite graph over others is as follows:

• Set a priority to each bipartite graph from 1 to P where P is the number of
bipartite graphs. P denotes the highest priority and 1 the lowest priority.

• Fill each entry of the costs matrix with 2P -1.

• For each entry of the costs matrix subtract 2j−1 with 1 ≤ j ≤ P depending on
the priorities that apply to such entry based on its corresponding vector from
the bipartite graphs.

At the end the lower costs entries will have a higher chance to be selected. This
methodology provides an option to measure the cost of setting infeasible options under
the given restrictions.

The advantage of this method is that we can generate P ! different orders for the
priorities and, indeed, we will have P ! candidates to be choose the final assignment
instead of have just one solution as in the binary costs matrix definition.
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4.2.2 Dealing with a different number of vertices by set

To simplify this part we decided to change the size of each dimension to the size of
the higher dimensions by adding some dummy vertices in order to equilibrate them.
The only required rule is to set a very high cost (depending on the selected model to
create the matrix costs) for those vectors that consider at least one dummy vertex.

This will allow us to use our algorithms and heuristics exactly in the same way
that they already work, however this will increase considerable the complexity of an
instance.

Suppose to have n1 > n2 > n3 > n4 ≥ 1. The final assignment will be of size n1

and we will have some vector in the final assignment that are invalid because they
consider some dummy vertices. Such vector should be taken out of the solution as
well as the invalid vectors due to the corresponding restrictions according with the
selected model to build the matrix costs.

4.3 A real life instance: classes scheduling at UAM

We obtained a real data set which corresponds to the information of 9 years of classes
scheduling of the faculty of basic sciences and engineering of the Universidad Au-
tonoma Metropolitana campus Azcapotzalco (UAM-A). Here we summarize some
important aspects and considerations about the classes scheduling in this faculty.

• This faculty is divided in five departments: basic sciences, systems, electronics,
energy and materials.

• The faculty can require some courses from other faculties and departments of
the university.

• Each department is in charge of some specific courses and each course is dis-
pensed by only one department.

• At UAM, a year is divided in three quarters called Y Y I, Y Y P and Y YO for
winter, spring and autumn correspondingly. For example, the quarter of winter
of 2016 is denoted as 16I.

• A course is called UEA (from the Spanish teaching-learning unit).

• For each quarter there is a minimum requirement of courses that should be
covered.

• Some courses, can be required to appear in more than one class.

• Each course is required to be taught a specific number of hours in a week.
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• Usually, most of courses are taught a minimum of 90 minutes or some multiples
of 90 minutes.

• The most common is to have courses of 270 minutes and 180 minutes and the
less common are of 90, 360 or 450 minutes in a week.

• Courses with more than 450 minutes use to be referred to some self-studying
courses and should not be taught in some specific time slot so they are not
considered as part of the assignment process since the function of the professor
is more as an advisor.

• Each course has assigned a number of credits that counts for the students record
in the university.

• The number of credits multiplied by ten is the desired number of hours that the
student should dedicate to the studying of such course.

• The possible notes to obtain for a student are MB (10), B (8), S (6) and NA
(not approved).

• The university opens at 7:00 a.m. and closes at 10:00 p.m.

• Each professor can be assigned to zero, one or more courses limited only by
the working day of each person, however the average of classes taught by each
professor is between 1 and 2.

• Each professor is assigned to some class by considering its experience or if he
claims to know the topics of specific courses.

• In most of the cases, a course should preferably assigned at the same time slot
among the week days.

The real data set is presented in a big table in a sheet of an Excel file. The table
is composed of the next columns:

• Id. Some identifier of the row for each set of quarters.

• Record. The number of the registry corresponding with such class.

• UEA. The identifier of the course.

• UEA name. The name of the course.

• Group. The identifier of the group.

• Quarter. The identifier of the quarter (as Y Y I, Y Y P or Y YO)

• Credits. The number of credits of the course.
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• Theory hours. The number of hours of theory that should be taught by some
professor.

• Laboratory hours. The number of hours of the practical laboratory.

• Department. The name of the department.

• MB. The number of student who got MB.

• B. The number of student who got B.

• S. The number of student who got S.

• NA. The number of not approved students.

• Capacity. The maximum number of students in such class.

• Number of declines. The number of people that decline to the course.

• Approval count. The number of students that approve the course. It corre-
sponds with the sum of MB,

• Not approval count. The number of students that do not approve the course.

• Professor. The name of the professor.

• Five columns for the day of week from Monday to Friday. Each day contains the
time period for the corresponding course or a dash if the course is not taught
such day.

This data set has 42604 records. There are 1372 professors, 1346 courses and 34
departments among all records. For the purposes of our assignment we only consider
the columns: UEA, UEA name, quarter, theory hours, laboratory hours, department,
professor and the five columns for the day of the week. The other columns could
be also useful as by giving a weight based on the approval count or the number
of declines, however we are considering a more general case in which maybe these
aspects are not relevant. If they are, then they can be incorporated as part of the
cost in some particular way depending of the requirements and the value added for
the assignment. In this moment we do not have some information about the value
added of other variables for the assignment.

4.3.1 Solving the school timetabling problem at UAM

In order to solve this particular STP we make the following assumptions:
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• We solve the assignment problem for each department independently. We an-
alyzed that just approximately less than the 10% of professors are assigned to
courses in two departments and less than the 1% are in more than two depart-
ments. Anyway we will avoid to assign a professor to more than one course at
the same time.

• In order to have the UEA requirement we can consider the assigned courses for
a the corresponding quarter. This means that we will perform assignments over
the quarters from the data set.

• For the available working day of each professor for a quarter we consider the
times at which such professor was assigned in at least one class during the
previous nine quarters. In this way we do not direct the our assignment to
something that already was applied.

• For the set of courses for which a professor will be available we consider those
courses that were taught during the previous nine quarters to the quarter to
solve.

• We consider time slots of 90 minutes starting at 7:00 a.m. and finishing at 10:00
p.m. This give us a total of 10 time slots in a day to set courses.

• The starting point of each time slot is fixed according with the Table 4.1:

Table 4.1: Starting times for the 10 time slots considered at UAM
Time slot 1 2 3 4 5 6 7 8 9 10

Starting time 7:00 8:30 10:00 11:30 13:00 14:30 16:00 17:30 19:00 20:30

• In order assign a class in one step, for the courses that require an assignment
with more than one time slot is designed a schema to create time periods which
allow to consider a group of time slots as a unique time period.

• Each course should be assigned from 1 to 5 time slots so, each course will be
assigned to the same time slots over the week according with its number of
required time slots.

• In addition to divide the data by department, we will divide the courses for each
department according with their number of time slots required. This means that
will be solved by approximately 34× 5 (|departments|×maximum time slots by
course) multidimensional assignment problems for design a complete courses
scheduling for a quarter.

• We do not have the information about the rooms so, the corresponding MAPs
can be modeled as 3AP.
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One of the most difficult parts of this modeling was to create the general schema
for those courses that should be assigned in more than one time slot over different
days of the week (many as the number of time slots). The number of all the possible
combinations can be really high and unrealistic for most of the cases. For example, a
course that should be set at two time slots can be resulted assigned a Monday at 7:00
hours and a Friday at 19:00 hours which is not common to occur. The time periods
schema that we consider reduce the number of combinations under the assumption
that all the time slots of a course should be given at the same starting points among
the days of the week. For example, a course with four time slots can be assigned
at any of the 10 starting points and assigned to one of five possible combinations
which are described at Table 4.2, additionally, we show a binary representation of
the considered days of the week for the required time slots where the most left bit
corresponds to Monday and the rightmost to Friday. A bit set to 1 indicates that
such day will be part of the time period for the course. The binary representation of
time periods helps to deal with the generation of the combinations and its handling
in an algorithm.

Table 4.2: Five possible options for a course with four time slots
Considered days Binary representation

Monday, Tuesday, Wednesday, Thursday 11110
Monday, Tuesday, Wednesday, Friday 11101
Monday, Tuesday, Thursday, Friday 11011

Monday, Wednesday, Thursday, Friday 10111
Tuesday, Wednesday, Thursday, Friday 01111

There are a total of
(
5
1

)
= 5,

(
5
2

)
= 10,

(
5
3

)
= 10,

(
5
4

)
= 5 and

(
5
5

)
= 1 possible

combinations for courses with 1, 2, 3, 4, and 5 time slots correspondingly. By consid-
ering the starting points for the time slots, this give us a maximum of 10× 10 unique
time periods among which the courses can be assigned.

By considering all the previous assumptions we proposed a new solution to solve
the STP at UAM-A that is based on the resolution of several 3AP to satisfy the UEA
requirement of a quarter at the faculty of Basic sciences and engineering at UAM-A.
Algorithm 25 shows our proposed solution.

The process showed in Algorithm 25 is as follows: first the list of assignments
is set to empty. The cycle at the line 3 allows to divide the UEA requirements by
department and the cycle at the line 4 allows to divide the requirements according to
the number of required time slots for the courses, both divisions are considered at the
same time at the line 5. At the line 6 the time slots are converted into time periods
according with the rules previously described. The cycle at the line 8 will be executed
whereas we have required courses to assign or until the process can not set a required
course. At the line 10 we obtain all the possible feasible assignments based on the list
of ProfessorsToCourses, the professor availability and the given time periods. Then,
at the line 11 we generate the binary costs matrix for the 3AP by adding the required
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Algorithm 25: A new solution for the STP at UAM-A based on the 3AP.

Input:
UEAReqByD. The requirements of UEA by department.
Departments. The list of departments.
ProfessorToCourses. A list of professors with their list of courses.
ProfessorAvailability. The working day of professors for the whole week.
TimeSlotsByCourse. The number of time slots by course.
Result: classesScheduling: The classes scheduling description.

1 Set ListOfAssignments := ∅;
2 foreach department ∈ Departments do
3 for blocks from 5 to 1 do
4 CoursesToSet := GetCoursesWithBlocks(UEAReqByD[department],

TimeSlotsByCourse, blocks);
5 TimePeriods := GetCombinationsOfTimePeriods(blocks);
6 MissingCourses := |CoursesToSet|+1;
7 while MissingCourses > |CoursesToSet| and |CoursesToSet| > 0 do
8 MissingCourses := |CoursesToSet|;
9 possibleAssignments := getAssignments(ProfessorsToCourses,

ProfessorAvailability, TimePeriods);
10 costsMatrix := generateBinaryCostsMatrix(possibleAssignments);
11 finalAssignment := SolveMAP(costsMatrix);
12 validAssignment := GetFeasibleAssignments(finalAssignment);
13 UpdateProfessorAvailability(ProfessorAvailability,

validAssignment);
14 ListOfAssignments := ListOfAssignments ∪ validAssignment;
15 UpdateCoursesToSet(CoursesToSet, validAssignment);

16 Set classesScheduling := getCompleteScheduling(ListOfAssignments);
17 return {classesScheduling};

dummy vertices if required. At the line 12 the corresponding 3AP is solved and then
at the line 13 we get the list of valid assignments from the corresponding solution
to the 3AP. Since the problem is solved by applying the technique of modeling the
3AP through a binary costs matrix the only valid assignments are those whose cost
is equal to zero. At the lines 14, 15 and 16 we update the professor availability,
the missing list of uea requirements and the final ListOfAssignments. The deepest
cycle can be executed by as many times ar the number of the required courses in the
worst case. However in practices just a few executions were required before to full
the requirements or not find more feasible assignments. Finally, we build the classes
scheduling based on the ListOfAssignments found by this procedure.

We decided to start with the courses with the highest number of time slots because
such courses usually are taught by a few number of professors therefore they have a
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higher priority to be assigned at first, however different orders for such process can
provide different global solutions.

4.3.2 Results on a real data set

We evaluated our solution for the STP at UAM-A by proposing classes scheduling for
the quarters of 15P, 15O and 16I for all the departments considered in the data set. It
is difficult to determine if our solution is better than the proposed classes scheduling
for the corresponding quarters because we do not have a way to measure how good
were the actual classes scheduling for such quarters. However, we proposed a metric
that calculates the percentage of satisfied courses. This metric allow us to measure
the effectiveness of the assignment by itself to cover all the set of UEA requirement
for each quarter.

In order to solve the 3AP instances involved in our solution for the STP at UAM-A
we considered our two best techniques:

1. MAP-Gurobi. It is used for the cases when the number of vertices is lower or
equal than 120.

2. Simple Memetic Algorithm (SMA). It is used for the cases when the number of
vertices is greather than 120.

Our solution for the STP at UAM-A was implemented in the programming lan-
guage R and its performance was evaluated on a platform with an Intel Core i5-3210M
2.5 GHz processor with 4 GB of RAM under Windows 8.

It is important to mention that our solution is not satisfying the 100.0% of the
UEA requirement in all the cases because we are only considering the historical time
periods and the historical taught courses for each professor but no the actual time
periods and the list of preferred courses (which may consider additional time periods
and courses to those considered in the historical reference) for the corresponding
quarter that we are solving, since such historical information is not available. In
addition, our formulation to generate time periods do not consider some special cases
of time periods, for example when a class should be scheduling at different days and
at different start times or when a course with two time slots should be set in two
consecutive time slots at the same day (because it is a laboratory course) or courses
with three time slots that should be set in two days of 1.5 time slot each due to
the working day professor requirements. This reasons derive in the problem that our
solution cannot find feasible options when an assignment with such time periods is
required. Another special case is when professors were hired just in the quarter in
which the assignment is solved and the cases when some professors are teaching some
courses by first time in the quarter to solve, which is again due to the fact that we
are only considering just the historical data for the last nine quarters to create the
valid assignment. If the model receive such new information the the quality of the
assignment can be higher.
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Table 4.3: Percentage of satisfied courses at UAM-A for the quarter 15P.

Department UEA Satisfied Missing Percentage of
requirements courses courses satisfied courses

ADMINISTRACION 3 2 1 66.6
CIENCIAS BASICAS 377 375 2 99.4

DERECHO 8 8 0 100.0
DIR CYAD 1 0 1 0.0

DIRECCION DE LA 263 197 66 74.9
ECONOMIA 5 3 2 60.0

ELECTRONICA 198 194 4 97.9
ENERGIA 279 273 6 97.8

EVA. DISENO EN E 1 0 1 0.0
HUMANIDADES 5 2 3 40.0

INV.CONOCIMIENTO 3 3 0 100.0
MATERIALES 156 155 1 99.3

OFICINAS DE LA R 6 4 2 66.6
PROCESOS TEC. RE 3 1 2 33.3

SECRETARIA ACADE 21 5 16 23.8
SISTEMAS 169 168 1 99.4

SOCIOLOGIA 4 3 1 75.0

Total 1502 1393 109 92.7

Tables 4.3, 4.4 and 4.5 show a summary of the classes scheduling found by
our solution for the STP at UAM-A considering the metric of the percentage of
satisfied courses. We show the number of UEA requirements, then the number of
satisfied courses, the number of not satisfied courses and the percentage of satisfied
courses. We can observe that in general the percentage of the total satisfaction of the
UEA requirement was greater than the 86.0%, even when in our assignment were not
considered some special cases of time periods. The quarter of higher demand usually
is the Y YO.

It is important to highlight that this results were obtained just by only considering
the historical information about previously taught courses and historical observed
time periods of availability at the university for each professor. In order to get a more
realistic solution it is necessary to have the information of the options of courses to
teach by each professor for the quarter to solve as well as the corresponding availability
of time slots in a week. Our tool is providing a solution that by using the historical
information is able to determine if the actual UEA requirements can be covered with
the currently hired personal or if it is necessary to hire some additional positions in
order to cover the missing requirement.

We omitted the results for the version of our solution that considers the creation
of a priority costs matrix because such formulation is more realistic for the cases when
the information about preferred courses to teach and availability of time slots is the
actual considered information for the quarter to solve and not the historical data.
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Table 4.4: Percentage of satisfied courses at UAM-A for the quarter 15O.

Department UEA Satisfied Missing Percentage of
requirements courses courses satisfied courses

ADMINISTRACION 118 104 14 88.1
CIENCIAS BASICAS 550 547 3 99.4
DEPTO. DE ESTUDI 6 1 5 16.6

DEPTO. DE PROCES 4 2 2 50.0
DEPTO. DE TECNOL 8 1 7 12.5

DERECHO 210 187 23 89.0
DIR CSH. 34 25 9 73.5

DIR CYAD 47 32 15 68.0
DIRECCION DE LA 190 168 22 88.4

ECONOMIA 150 121 29 80.6
ELECTRONICA 249 249 0 100.0

ENERGIA 315 299 16 94.9
EVA. DISENO EN E 156 104 52 66.6

FILOSOFIA 3 1 2 33.3
HUMANIDADES 78 70 8 89.7

INV.CONOCIMIENTO 118 90 28 76.2
MATEMATICAS 5 3 2 60.0

MATERIALES 222 222 0 100.0
MEDIO AMBIENTE 74 42 32 56.7
OFICINAS DE LA R 5 4 1 80.0

PROCESOS TEC. RE 222 162 60 72.9
PRODUCCION ECONO 3 3 0 100.0
SECRETARIA ACADE 4 4 0 100.0

SISTEMAS 204 202 2 99.0
SOCIOLOGIA 145 61 84 42.0

TEORIA Y ANALISI 3 1 2 33.3

Total 3123 2705 418 86.6
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Table 4.5: Percentage of satisfied courses at UAM-A for the quarter 16I.

Department UEA Satisfied Missing Percentage of
requirements courses courses satisfied courses

ADMINISTRACION 3 3 0 100.0
CIENCIAS BASICAS 247 246 1 99.5

DERECHO 10 10 0 100.0
DIR CSH. 1 0 1 0.0

DIRECCION DE LA 176 127 49 72.1
ECONOMIA 3 3 0 100.0

ELECTRONICA 135 133 2 98.5
ENERGIA 173 166 7 95.9

EVA. DISENO EN E 2 2 0 100.0
HUMANIDADES 5 5 0 100.0

MATERIALES 101 100 1 99.0
OFICINAS DE LA R 4 2 2 50.0

PROCESOS TEC. RE 4 4 0 100.0
SECRETARIA ACADE 65 2 63 3.0

SISTEMAS 110 110 0 100.0
SOCIOLOGIA 4 4 0 100.0

Total 1043 917 126 87.9
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Chapter 5

Conclusions

We can conclude several things about two different lines of researching, by one side all
the results about algorithms and heuristics for the resolution of the multidimensional
assignment problem and, by the other side about the modeling and resolution of
personnel assignment problems, in particular the school timetabling problem, through
the multidimensional assignment problem.

Even when such lines are related we decided to divide our perspective in both
lines in order to show the progress on each researching line as well as the possible
future work.

5.1 The assignment problem

We determined that the Hungarian method is not the most suitable algorithm to
solve some particular types of instances of the assignment problem, in particular for
the three general variants of assignment problems: perfect assignments, imperfect
assignments and incremental assignments.

For the purposes of solving a 2-dimensional assignment problem as part of a s-
dimensional assignment problem with s ≥ 3 we determined that the most suitable
technique is a state-of-the-art auction algorithm aimed to solve perfect assignment
which is the particular problem to solve for this case. This auction algorithm is called
ε-scaling auction algorithm and it is more than 20 times faster than a state-of-the-art
version of the Hungarian method, which was a very important fact that helped us to
obtain a high quality solution in our simple memetic algorithm but in lower running
times in comparison with the more complex state-of-the-art memetic algorithm for
the multidimensional assignment problem.

Other contribution is that we found that a very important factor that has an
impact on the resolution time is the distribution of the weights among the edges of
the bipartite graph of each instance. Those instances whose distribution of weights
among the edges were uniformly generated at random are the most difficult to solve
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by the ε-scaling auction algorithm in comparison to the other studied distributions.
The distribution that we care for the purposes of the multidimensional assignment
problem were those uniformly generated at random, but even in such case the ε-scaling
auction algorithm was approximately 27 times faster than the Hungarian method.

5.2 The multidimensional assignment problem

The multidimensional assignment problem it is known to be a NP-hard problem and
even when better algorithms for this problem can be proposed in the future, unless
P = NP will be difficult to reach a progress that allows to solve exactly instances of
real life because the complexity of the problem grows exponentially and the real life
problem size are considerably larger to the currently reached progress.

We summarize the main exact techniques that solve this problem and propose
a new one, our MAP-Gurobi, which even defeat a state-of-the-art technique for the
particular cases of instances of 3AP until 100 vertices under the evaluated families of
instances proposed by several authors at different researches, finding optimal solutions
for some instances where only feasible solutions were known.

We proposed some naive basic local search heuristics and the generalization of
state-of-the-art local search heuristics, such as the generalization of the dimension-
wise variation heuristics and the generalized local search heuristic, which allow us to
obtain new local searches as DV3 and DVH3 that are competitive against the state-
of-the-art metaheuristic (a relative complex memetic algorithm) that uses as part of
its machinery some lower quality solution techniques with respect to our proposed
local searches. We determined that the techniques DV3 and DVH3 provide quality
solutions that obtained optimal results for the evaluated families of instances Random
and Geometric, results pretty near to the optimal for the family of instances Product,
with a relative solution error of 0.4%, and very competitive results for the families
of instances Clique and Square Root, with relative solution errors of approximately
2.0% and 2.6% correspondingly. Part of this results were accepted for its publication
in the Journal of Computational Intelligence.

We proposed a new state-of-the-art simple memetic algorithm for this problem
which is competitive against the previously state-of-the-art memetic algorithm in
terms of the complexity of the structure of the procedure as well as in obtaining sim-
ilar quality solutions in lower running times. We determined that the quality of the
memetic algorithm depends on the local search used as well as depend on the com-
bination of the used method for the selection function, the crossover operator and
the mutation operator, where the contribution is that among the evaluated selection
functions and operators, the elitist selection function, the cycled crossover operator
and the inversion mutation provide us the results of higher quality under the eval-
uated families of instances. The relative solution error for the families of instances
Clique and Square Root under our simple memetic algorithm, which were the most
difficult families for DV3 and DVH3, were of 0.3% and 0.7% correspondingly after
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running times of 30 seconds which is similar to the reported relative solution errors of
0.2% and 0.4% for the state-of-the-art memetic algorithm but after running times of
300 seconds. Part of this results were accepted for its publication in the 2017 14th In-
ternational Conference on Electrical Engineering, Computing Science and Automatic
Control (CCE 2017) through a medium length paper.

We obtained as state-of-the-art software for solving instances of the multidimen-
sional assignment problem in as many dimensions and vertices as the current restric-
tions of memory space allow us to have.

5.3 Personnel assignment problems

We determined that any problem that deals with the assignment of personnel can be
modeled as a through a multidimensional assignment problem for the cases where are
involved assignments between persons and two or more other disjoint sets of things
of concepts. We focused our study of personnel assignment problems on the case of
the school timetabling problem where the assignment between elements from more
than two sets is required.

Once we have a nice software to solve instances of the multidimensional assign-
ment problem the only concern is to design a methodology for the establishing of
weights for the hyperedges of the corresponding sAP. We proposed two criteria for
this task: the binary costs matrix and the priority costs matrix. The first criteria is
good for the cases where only feasibility is important whereas the second try to mea-
sure priorities over the assignment. This two criteria can be applied to any type of
personnel assignment problem even when they are originally proposed for the school
timetabling problem, we only need to model the corresponding problem according
with the given methodologies and the proper restrictions and considerations of the
problem to solve.

We considered the problem at the department of Basic Sciences at the Universi-
dad Autonoma Metropolitana campus Azcapotzalco as a particular case of a school
timetabling problem. We proposed a new solution for this problem which considered
the historical data about previously taught courses by professors and their availabil-
ity time periods at the university in order to determine if, based on such historical
data, the university is able to satisfy the UEA requirement for the a particular quar-
ter. The more realistic case is consider the actual requirements for a new quarter
and the actual restrictions of the professors, however by the time of this thesis such
data were not available. We show that the effectiveness of our methodology from
the perspective of the percentage of the satisfied UEA requirements is higher than
the 98% by considering historical data. We consider that the use of the proposed
solution with not only the historical data, but with the actual data to be used for
the classes scheduling of a new quarter can give even more better results and can be
useful for the making decisions about if are required new hirings in order to satisfy
the UEA requirements or they even can be solved with the available personnel at that
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Conclusions 118

moment. We are able to add several restrictions to our solution and obtain results
in a few minutes whereas the actual mechanism can take more than hours and days
depending on the restrictions for each quarter. We conclude that our tool is able to
be tested and applied for future scenarios of classes scheduling at UAM-A.

5.4 Future work

There are several lines that even can be explored.

In the case of the MAP we believe that should be possible to develop a better
particular algorithm to solved it because the proposed solution, even when represents
a new state-of-the-art algorithm, is based on a generic machinery. We only explored
the versions of DV3 and DVH3 however we believe that other heuristics like a DV4,
DVH4, or even more, DVH(s − 1) can provide higher quality solutions. We believe
that smarter local searches derived from the k-opt heuristics also can be proposed
in order to provide higher quality solutions than the brute force version of k-opt.
We considered that our simple memetic algorithm also can explore over other selec-
tion functions, crossover and mutation operators such that the development of other
more specific for MAP can even provide higher quality solutions. In addition, it can
be considered the combination of our simple memetic algorithm with stronger local
searches as DV3 or DV(s−1) in order to compare its performance against the current
state-of-the-art which considers local searches of lower quality solution.

In the case of the STP new ways to build the costs matrix for the corresponding
sAP even can be proposed as well as other ways for the creation of time periods from
time slots, which may include some particular cases not considered in our solution. It
is necessary to apply our solution by considering a realistic scenario instead of histor-
ical information, this will provide a better metric for our solution. It is necessary to
consider the information about rooms since out solution could not test those scenarios
since in the information of real data the number of rooms was not available. More
complex but realistic versions for the STP at UAM-A should consider the original
demand of courses for the quarter to solve as well as preferences of students in order
to obtain a solution that satisfies more aspects of the problem.
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